
Contents

2. Tools from algorithms and complexity theory 1
David P. Williamson
2.1. Algorithmic techniques 2
2.2. Analysis of algorithms 15
2.3. Complexity theory and a notion of efficiency 18
2.4. Complexity theory and a notion of hardness 20
2.5. Coping with NP-completeness 26

i

2
Tools from algorithms and
complexity theory

David P. Williamson
Cornell University

Given the taxonomy of deterministic scheduling problems in Chapter 1, we could
immediately begin the discussion of their solution, but this would be a bit like a nat-
uralist heading out into the forest with just a field guide and no equipment. Instead,
we spend a brief moment in this chapter familiarizing ourselves with many tools and
concepts from the field of combinatorial optimization that will be useful in designing
scheduling algorithms in subsequent chapters. The field of combinatorial optimiza-
tion is now sufficiently broad that any given topic we cover has already had a book
written about it. Thus we will not cover any topic in depth, but rather cover the basic
material that will be needed for the rest of this book. We will give references to more
comprehensive treatments in the notes at the end of the chapter.

In the first part of the chapter we consider some well-studied algorithmic tech-
niques: namely, linear programming, network flow, and dynamic programming.
These techniques are sufficiently general that they can be used to solve several
scheduling problems, and can be used as subroutines within algorithms for other
scheduling problems. Furthermore, the techniques are efficient in practice. In the
second part of the chapter, we turn to the concept of the complexity of algorithms
and problems. Just as the naturalist, possessing a taxonomy of plants, would like
indications of whether a plant is poisonous or not, the theory of NP-completeness
helps determine whether a given scheduling problem is likely to have an efficient
algorithm to solve it. We end the chapter by discussing a few techniques that can be
brought to bear on the more poisonous varieties of scheduling problems.

1

2 2. Tools from algorithms and complexity theory

2.1. Algorithmic techniques

Linear programming. One of the most useful tools from combinatorial optimiza-
tion is linear programming. In linear programming, we find a non-negative, rational
vector x that minimizes a given linear objective function in x subject to linear con-
straints on x. More formally, given an n-vector c ∈ Qn, an m-vector b ∈ Qm, and
an m× n matrix A = (ai j) ∈ Qm×n, an optimal solution to the linear programming
problem

Min
n

∑
j=1

c jx j

subject to:

(P)
n

∑
j=1

ai jx j ≥ bi for i = 1, . . . ,m (2.1)

x j ≥ 0 for j = 1, . . . ,n (2.2)

is an n-vector x that minimizes the linear objective function ∑
n
j=1 c jx j subject to the

constraints (2.1) and (2.2). The vector x is called the variable. Any x which satisfies
the constraints is said to be feasible, and if such an x exists, the linear program is
said to be feasible. If there does not exist any feasible x, the linear program is called
infeasible. The term “linear program” is frequently abbreviated to LP. Sometimes
LPs are expressed more compactly in matrix/vector notation as follows:

Min cT x

subject to:
Ax≥ b

x≥ 0,

where cT denotes the transpose of c. There are very efficient, practical algorithms
to solve linear programs; LPs with tens of thousands of variables and constraints are
solved routinely.

One could imagine variations and extensions of the linear program above: for
example, maximizing the objective function rather than minimizing it, having equa-
tions in addition to inequalities, and allowing variables x j to take on negative values.
However, the linear program (P) above is sufficiently general that it can capture all
these variations, and so is said to be in canonical form. To see this, observe that
maximizing ∑

n
j=1 c jx j is equivalent to minimizing −∑

n
j=1 c jx j, and that an equa-

tion ∑
n
j=1 ai jx j = bi can be expressed as a pair of inequalities ∑

n
j=1 ai jx j ≥ bi and

−∑
n
j=1 ai jx j ≥ −bi. Finally, a variable x j which is allowed to be negative can be

expressed in terms of two non-negative variables x+j and x−j by substituting x+j − x−j
for x j in the objective function and the constraints.

Another variation of linear programming, called integer linear programming or

2.1. Algorithmic techniques 3

integer programming, allows constraints requiring a variable x j to be an integer. For
instance, we can require that x j ∈ N, or that x j be in a bounded range of integers,
such as x j ∈ {0,1}. Unlike linear programming, there is currently no efficient, prac-
tical algorithm to solve general integer programs; in fact, many quite small integer
programs are very difficult to solve. In Section 2.4, we will see evidence that it is un-
likely that such an algorithm can exist. Nevertheless, integer programming remains
a useful tool because it is a compact way to model problems in combinatorial opti-
mization, and because there are several important special cases that do have efficient
algorithms.

To illustrate the usefulness of linear programming in solving scheduling prob-
lems, consider the problem R|pmtn|Cmax. We will show that the problem of deciding
how to allocate portions of each job to each machine can be formulated as a linear
program, although we defer until Chapter 9 the problem of constructing a feasible
schedule from the allocations. Let the variable C denote the makespan of the sched-
ule, which we wish to minimize, and let the variable xi j denote the fraction of the
jth job to be allocated to the ith machine. Thus for any job j, ∑

m
i=1 xi j = 1. The

total amount of processing to be performed by machine i is then ∑
n
j=1 pi jxi j, so that

C ≥ ∑
n
j=1 pi jxi j. Finally, no job can be processed for more than C units of time, so

that C≥∑
m
i=1 pi jxi j. In Chapter 9, we will see that any feasible values of x and C can

be converted into a schedule of makespan C. Thus we can formulate the problem as
the following linear program,

Min C

subject to:
m

∑
i=1

xi j = 1 j = 1, . . . ,n

(R) C−
n

∑
j=1

pi jxi j ≥ 0 i = 1, . . . ,m

C−
m

∑
i=1

pi jxi j ≥ 0 j = 1, . . . ,n

xi j ≥ 0 i = 1, . . . ,m; j = 1, . . . ,n,

and the optimal solution to the linear program, C, is the minimum possible makespan.
Observe that if we add the constraints xi j ∈{0,1} for all i, j to the LP (R), then this

integer program models the problem R||Cmax, in the sense that the optimal solution
to the integer program has the same value as the optimal solution to the problem
R||Cmax, and the solution xi j indicates which machines should process which jobs.
However, adding these constraints makes the problem much harder to solve than the
linear program.

Linear programming has a very interesting and useful concept of duality. To
explain it, we begin with a small example. Consider the following linear program in

4 2. Tools from algorithms and complexity theory

canonical form:

Min 6x1 +4x2 +2x3

subject to:
4x1 +2x2 + x3 ≥ 5
x1 + x2 ≥ 3
x2 + x3 ≥ 4
xi ≥ 0 for i = 1,2,3.

Observe that because all variables x j are non-negative, it must be the case that the ob-
jective function 6x1+4x2+2x3 ≥ 4x1+2x2+x3. Furthermore, 4x1+2x2+x3 ≥ 5 by
the first constraint. Thus we know that the value of the objective function of an opti-
mal solution to this linear program (called the optimal value of the linear program) is
at least 5. We can get an improved lower bound by considering combinations of the
constraints. It is also the case that 6x1+4x2+2x3 ≥ (4x1+2x2+x3)+2 ·(x1+x2)≥
5+ 2 · 3 = 11, which is the first constraint summed together with twice the second
constraint. Even better, 6x1 +4x2 +2x3 ≥ (4x1 +2x2 + x3)+(x1 + x2)+(x2 + x3)≥
5+3+4 = 12, by summing all three constraints together. Thus the optimal value of
the LP is at least 12.

In fact, we can set up a linear program to determine the best lower bound ob-
tainable by various combinations of constraints. Suppose we take y1 times the first
constraint, y2 times the second, and y3 times the third, where the yi are non-negative.
Then the lower bound achieved is 5y1 +3y2 +4y3. We need to ensure that

6x1 +4x2 +2x3 ≥ y1(4x1 +2x2 + x3)+ y2(x1 + x2)+ y3(x2 + x3),

which we can do by ensuring that no more than 6 copies of x1, 4 copies of x2, and 2
copies of x3 appear in the sum; that is, 4y1+y2≤ 6, 2y1+y2+y3≤ 4, and y1+y3≤ 2.
We want to maximize the lower bound achieved subject to these constraints, which
gives the linear program

Max 5y1 +3y2 +4y3

subject to:
4y1 + y2 ≤ 6
2y1 + y2 + y3 ≤ 4
y1 + y3 ≤ 2
yi ≥ 0 i = 1,2,3

This maximization linear program is called the dual of the previous minimization
linear program, which is referred to as the primal. It is not hard to see that any
feasible solution to the dual gives an objective function value that is a lower bound
on the optimal value of the primal.

2.1. Algorithmic techniques 5

We can create a dual for any linear program; the dual of the canonical form LP
(P) above is

Max
m

∑
i=1

biyi

subject to:

(D)
m

∑
i=1

ai jyi ≤ c j for j = 1, . . . ,n

yi ≥ 0 for i = 1, . . . ,m.

As in our small example, we introduce a variable yi for each linear constraint in the
primal, and try to maximize the lower bound achieved by summing yi times the ith
constraint, subject to the constraint that the variable x j not appear more than c j times
in the sum. In matrix/vector notation this is

Max yT b

subject to:
yT A≤ c

y≥ 0.

We now formalize our argument above that the value of the dual of the canonical
form LP is a lower bound on the value of the primal. This fact is called weak duality.

Theorem 2.1 [Weak duality]. If x is a feasible solution to the LP (P), and y a fea-
sible solution to the LP (D), then ∑

n
j=1 c jx j ≥ ∑

m
i=1 biyi.

Proof.

n

∑
j=1

c jx j ≥
n

∑
j=1

(
m

∑
i=1

ai jyi

)
x j (2.3)

=
m

∑
i=1

(
n

∑
j=1

ai jx j

)
yi

≥
m

∑
i=1

biyi, (2.4)

where the first inequality follows by the feasibility of y, the next equality by an
interchange of summations, and the last inequality by the feasibility of x. 2

A very surprising, interesting, and useful fact is that when both primal and dual
LPs are feasible, their values are exactly the same! This is sometimes called strong
duality.

Theorem 2.2 [Strong duality]. If the LPs (P) and (D) are feasible, then for any
optimal solution x∗ to (P) and any optimal solution y∗ to (D), ∑

n
j=1 c jx∗j = ∑

m
i=1 biy∗i .

6 2. Tools from algorithms and complexity theory

As an example of this, for the small, three-variable LP and its dual we saw earlier,
the optimal value is 14, achieved by setting x∗1 = 0, x∗2 = 3, and x∗3 = 1 in the primal,
and y∗1 = 0, y∗2 = 2, and y∗3 = 2 in the dual. A proof of Theorem 2.2 is beyond the
scope of this chapter, but one can be found in the textbooks on linear programming
referenced in the notes at the end of the chapter.

An easy but useful corollary of strong duality is a set of implications called the
complementary slackness conditions. Let x̄ and ȳ be feasible solutions to (P) and
(D), respectively. We say that x̄ and ȳ obey the complementary slackness conditions
if ∑

m
i=1 ai j ȳi = c j for each j such that x̄ j > 0 and if ∑

n
j=1 ai j x̄ j = bi for each i such

that ȳi > 0. In other words, whenever x̄ j > 0 the dual constraint that corresponds to
the variable x j is met with equality, and whenever ȳi > 0 the primal constraint that
corresponds to the variable yi is met with equality.

Corollary 2.3 [Complementary slackness]. Let x̄ and ȳ be feasible solutions to the
LPs (P) and (D), respectively. Then x̄ and ȳ obey the complementary slackness
conditions if and only if they are optimal solutions to their respective LPs.

Proof. If x̄ and ȳ are optimal solutions, then by strong duality the two inequalities
(2.3) and (2.4) must hold with equality, which implies that the complementary slack-
ness conditions are obeyed. Similarly, if the complementary slackness conditions
are obeyed, then (2.3) and (2.4) must hold with equality, and it must be the case that
∑

n
j=1 c j x̄ j = ∑

m
i=1 biȳi. By weak duality, ∑

n
j=1 c jx j ≥ ∑

m
i=1 biyi for any feasible x and

y so therefore x̄ and ȳ must be optimal. 2

So far we have only discussed the case in which the LPs (P) and (D) are feasible,
but of course it is possible that one or both of them are infeasible. The following
theorem tells us that if the primal is infeasible and the dual is feasible, the dual must
be unbounded: that is, given a feasible y with objective function value z, then for
any z′ > z there exists a feasible y′ of value z′. Similarly, if the dual is infeasible and
the primal is feasible, then the primal is unbounded: given feasible x with objective
function value z, then for any z′ < z there exists a feasible x′ with value z′. If an LP
is not unbounded, we say it is bounded.

Theorem 2.4. For primal and dual LPs (P) and (D), one of the following four state-
ments must hold: (i) both (P) and (D) are feasible; (ii) (P) is infeasible and (D) is
unbounded; (iii) (P) is unbounded and (D) is infeasible; or (iv) both (P) and (D)
are infeasible.

Sometimes in the design of scheduling algorithms it is helpful to take advantage
of the fact if an LP is feasible, there exist feasible solutions of a particular form,
called basic solutions. Furthermore, if an optimal solution exists, then there exists
an optimal solution that is basic. Most linear programming algorithms will return
a basic optimal solution. Suppose for a moment that in the canonical primal LP,
there are more variables than constraints, that is, n ≥ m. A basic solution to the
LP is obtained by setting n−m of the variables x j to zero, treating the inequalities
as equalities, and solving the resulting m×m linear system (assuming the system

2.1. Algorithmic techniques 7

Figure 2.1. Example of a maximum flow problem.

is consistent and the given m columns are linearly independent). In fact, the oldest
and most frequently used linear programming algorithm, called the simplex method,
works by moving from basic solution to basic solution, at each step swapping a
variable set to zero for a variable in the linear system in a particular manner until an
optimal solution is reached. When there are more constraints than variables (m ≥
n), a basic solution is obtained by selecting n of the constraints, treating them as
equalities, and solving the resulting n× n linear system (assuming the system is
consistent and the n constraints are linearly independent). The solution obtained
might not be feasible (since we ignored some constraints), but if an optimal solution
exists, there will exist one of this form.

Network flow. We now turn to another useful tool from combinatorial optimization,
called network flow. An example of the most fundamental problem in this area is
shown in Figure 2.1. We have a source of fluid and a destination for it joined by a
network of pipes, each pipe with its own capacity. We would like to know at what
rate we can send a flow of fluid from the source to the destination given the capacity
of the pipes. The problem is usually abstracted as a directed graph G = (V,E), with
two distinguished nodes, a source node s and a sink node t, such that no arc enters
the source, and no arc leaves the sink. A capacity ui j is associated with each arc
(i, j) of the directed graph (see Figure 2.2). This maximum flow problem is used to
model flow in pipes, traffic on streets, and the movement of goods via various modes
of transportation, among other things.

It is not hard to see that the maximum flow problem can be modelled as a lin-

8 2. Tools from algorithms and complexity theory

s

t

1

2

3

4

51

1

43

Figure 2.2. Abstraction of the maximum flow problem in Figure ??.

ear program. Create a variable xi j for each arc (i, j) to denote the flow on the
arc. Then we wish to maximize the total flow out of the source, ∑ j∈V :(s, j)∈E xs j,
subject to two types of constraints. First, for any arc (i, j) the flow on arc (i, j)
must not exceed its capacity; that is, xi j ≤ ui j. Second, for any node k 6= s, t, the
flow coming into node k must be equal to the flow going out of node k; that is,
∑i∈V :(i,k)∈E xik−∑ j∈V :(k, j)∈E xk j = 0. The first type of constraint is called a capacity
constraint, and the second type is called a flow conservation constraint. The maxi-
mum flow problem can thus be modelled as the linear program

Max ∑
j∈V :(s, j)∈E

xs j

subject to:
(MF) ∑

i∈V :(i,k)∈E
xik− ∑

j∈V :(k, j)∈E
xk j = 0 k ∈V : k 6= s, t

0≤ xi j ≤ ui j (i, j) ∈ E,

and solving the linear program gives a maximum flow.
Although the maximum flow problem and the other network flow problems con-

sidered here can all be modelled as linear programs, we consider them separately for
two reasons: first, they form an extremely useful subclass of linear programs; and
second, as we discuss at more length later on, there are special-purpose algorithms
for network flow problems that are much more efficient than the general linear pro-
gramming algorithms.

Unlike most linear programs, the maximum flow LP above has the property that if
the capacities u are integer, then the basic solutions x are also integer. In particular, if
an optimal solution exists, then there is an optimal solution such that the values of the
xi j are integer. In other words, if the capacities u are integer, then adding integrality
constraints xi j ∈ Z does not change the optimum value. This turns out to be true for

2.1. Algorithmic techniques 9

all the network flow problems we discuss in this section, and, as we will see, this is
a useful fact for designing scheduling algorithms.

Network flow problems also turn out to have interesting combinatorial dual prob-
lems, which are sometimes useful in their own right. For example, there is a natural
combinatorial structure to the maximum flow problem that gives upper bounds on
the amount of flow we can send from s to t. Let S be a set of vertices containing s but
not t. Let u(S) denote the total capacity of all the arcs with their tails in S and their
heads in S̄; that is, u(S) = ∑i∈S, j∈S̄ ui j. We call S an s-t cut of the graph, and u(S) the
value of the s-t cut. It is not difficult to see that for any s-t cut S the total amount of
flow going from s to t cannot exceed u(S). The strongest upper bound on the flow is
then a minimum s-t cut – the s-t cut S that minimizes u(S).

Of course, the maximum flow problem also has a linear programming dual, which
is as follows:

Min ∑
(i, j)∈E

ui jzi j

subject to:
zi j + y j− yi ≥ 0 for (i, j) ∈ E; i 6= s, t; j 6= s, t

(MFD) zs j + y j ≥ 1 for (s, j) ∈ E

zit − yi ≥ 0 for (i, t) ∈ E

zi j ≥ 0 for (i, j) ∈ E.

We will shortly prove that in fact this linear programming dual corresponds to the
minimum s-t cut problem, so that the value of the linear programming dual and the
combinatorial dual are precisely the same.

Lemma 2.5. The value of the dual LP (MFD) is exactly the value of a minimum s-t
cut.

By strong duality, this immediately implies the following celebrated max flow/min
cut theorem.

Theorem 2.6. The value of a maximum flow in a directed graph is the same as the
value of its minimum s-t cut.

This theorem can be extended to undirected graphs. The maximum flow in an
undirected graph is the maximum flow in the directed graph obtained by replacing
each undirected edge (i, j) of capacity ui j with two directed arcs (i, j) and (j, i) of
capacity ui j. We remove arcs entering s and leaving t. The capacity of an s-t cut
S in an undirected graph is simply the sum of the capacities of all edges with one
endpoint in S and the other not in S. Then the theorem holds as before.

We now prove Lemma 2.5.

Proof of Lemma 2.5. We prove equality by proving first that the value of LP is no
greater than the value of a minimum s-t cut, and then the reverse. Given a minimum

10 2. Tools from algorithms and complexity theory

s-t cut S, we create a solution to the LP (MFD) of value u(S) by setting zi j = 1 if
i ∈ S, j /∈ S, and zi j = 0 otherwise. We set yi = 1 if i ∈ S and yi = 0 otherwise. It is
easy to verify that (y,z) is a feasible solution of value u(S), so that the value of the
LP must be no greater than that of a minimum s-t cut.

We now prove that there exists an s-t cut of value no greater than the value of an
optimal solution (y∗,z∗). For notational convenience, we add variables y∗s = 1 and
y∗t = 0. We select a value U uniformly at random from the interval (0,1], and use
it to create an s-t cut S: if y∗i ≥U , then i ∈ S, otherwise i /∈ S. Obviously s ∈ S and
t /∈ S. The probability that arc (i, j) ends up in the cut is then max(0,min(y∗i ,1)−
max(y∗j ,0)), which is no greater than z∗i j by the feasibility of LP solution y∗. Thus
the expected value of the s-t cut produced is at most ∑(i, j)∈E ui jz∗i j. Therefore, there
exists an s-t cut of value at most ∑(i, j)∈E ui jz∗i j, and we are done. 2

We can use the maximum flow problem to determine whether or not a feasible
solution exists for the problem P|pmtn,r j, d̄ j|−. In Chapter 9, we will see a rule by
McNaughton that shows that a schedule of makespan T can be constructed for the
problem P|pmtn|Cmax if and only if T ≥ max{max j p j,

1
m ∑

n
j=1 p j}, where m is the

number of machines. We now show how the maximum flow problem can be used
to reduce the feasibility of P|pmtn,r j, d̄ j|− to McNaughton’s rule. First, sort the
release dates r j and the deadlines d̄ j into increasing order, and obtain a list of times
(without repetitions) 0 = t0 < t1 < t2 < · · · < tq, such that for every r j and d̄ j there
exists some k and l such that tk = r j and tl = d̄ j. Construct a network with a source
node s, a sink node t, n nodes j (one for each job j), and q nodes Tk (one for each
time interval [tk−1, tk]). For each job j, add an arc (s, j) of capacity p j to the network,
and for each node Tk, add an arc (Tk, t) of capacity m(tk− tk−1). Finally, for each job
j, let k and l be such that tk = r j and tl = d̄ j, and for each h, k+1≤ h≤ l, add an arc
(j,Th) of capacity th− th−1. We call this network N, and we can show the following
theorem.

Theorem 2.7. There is a feasible solution to an instance of P|pmtn,r j, d̄ j|− if and
only if the corresponding network N has maximum flow value exactly ∑

n
j=1 p j.

Proof. Given a schedule, we can construct a flow of the required value. On each
arc (s, j) put a flow of value of value p j, while on each arc (j,Tk) put a flow of value
equal to the amount of time job j was processed in time interval [tk−1, tk]. Clearly the
capacity constraints for these arcs are obeyed, since the capacity of arc (s, j) is p j,
and the capacity of arc (j,Tk) is tk−tk−1. For each arc (Tk, t) put a flow of value equal
to the amount of processing performed by the m machines in time interval [tk−1, tk].
This flow cannot have value more than m(tk− tk−1), and so the capacity constraint
on arc (Tk, t) is obeyed. The flow is of value ∑

n
j=1 p j, since that is the total amount of

flow out of the source s. The flow conservation constraints are obeyed at each node:
for each node j, p j units of flow enter from the source s, and p j units leave since p j
units of time are scheduled for job j overall. Similarly, for node Tk, the total flow
entering and leaving Tk is equal to the amount of processing performed during the
corresponding time interval.

2.1. Algorithmic techniques 11

In a similar fashion, we can show that given a flow of value ∑
n
j=1 p j, we can

construct a feasible schedule by using McNaughton’s rule. Let pk
j be the amount

of flow on arc (j,Tk) (and 0 if the arc does not exist). Since the flow has value
∑

n
j=1 p j, there must be flow of value p j on each arc (s, j), so that by flow conserva-

tion, ∑
q
k=1 pk

j = p j for all jobs j. By the capacity constraints on arcs (j,Tk) we know
that pk

j ≤ tk− tk−1 for each j and k, and by capacity constraints on arcs (Tk, t), we
know that ∑

n
j=1 pk

j ≤m(tk− tk−1) for each k. Thus by McNaughton’s rule, during the
time interval tk− tk−1 we can construct a schedule in which pk

j units of job j are fea-
sibly scheduled, since tk− tk−1 ≥max{max j pk

j,
1
m ∑

n
j=1 pk

j}. Putting these schedules
together gives an overall feasible schedule for the instance from time 0 to time tq,
since for each job j, p j units are scheduled, and by the construction of the network,
they must be scheduled between time r j and d̄ j. 2

There are other network flow problems which are useful for solving scheduling
problems. In Chapter 9 we will look at a variation on the maximum flow problem in
which the capacities of the arcs leaving the source are a linearly increasing function
of a parameter λ (that is, us j = as j +λ · bs j, where as j,bs j ≥ 0), and the capacities
of the arcs entering the sink are a linearly decreasing function of λ (that is, uit =
ait −λ ·bit , where ait ,bit ≥ 0). In the parametric maximum flow problem, we would
like to compute the value of the maximum flow for k different non-negative values of
λ. Of course, this can be done by computing a maximum flow k times, but it turns out
that there are more efficient algorithms. We discuss this further later in the chapter.

One of the most general network flow problems assigns costs to the arcs of the
directed graph, so that sending a unit of flow through arc (i, j) costs ci j units. The
objective function is then to find the flow that minimizes the total cost, and so is
called the minimum-cost flow problem. For each node i in the directed graph there is
a specified supply value bi, which must be the difference between the flow leaving
node i and the flow entering i. Those nodes for which bi > 0 are called sources and
those for which bi < 0 are called sinks. Note that in order for the problem to have
a feasible solution, it must be the case that ∑i∈V bi = 0. Arcs (i, j) can have lower
bounds li j in addition to capacities ui j: that is, there must be at least li j units of
flow through arc (i, j). The problem can then be formulated as the following linear
program:

Min ∑
(i, j)∈E

ci jxi j

subject to:

∑
(k, j)∈E

xk j− ∑
(i,k)∈E

xik = bk ∀k ∈V

li j ≤ xi j ≤ ui j ∀(i, j) ∈ E.

As in the case of the maximum flow problem, whenever the supplies bi, the capacities
ui j, and the lower bounds li j are integer, the basic solutions x of this linear program

12 2. Tools from algorithms and complexity theory

are also integer.
One particularly useful special case of the minimum-cost flow problem is when

the network is a complete directed bipartite graph, with arcs from sources to sinks,
each source with supply 1 and each sink with supply −1, and li j = 0 and ui j = ∞ for
each arc. The assumption that the supplies sum to zero implies that there must be
the same number of sources and sinks. Since b, l, and u are integer, a basic optimal
solution x must be integer, and thus for each source i, there is exactly one sink j such
that xi j = 1 (for all other sinks k 6= j, xik = 0). That is, each source is assigned to
exactly one sink, and hence this special case is called the assignment problem, and
solutions to this problem are called assignments.

We can use the assignment problem to solve the scheduling problem 1|p j =
1|∑ j f j. For each of the n jobs, we create a source and a sink node. The jth source
represents the jth job, and the kth sink represents the kth position in the sequence
of jobs. Since the job in the kth position will complete at time k, the cost of the
jth job finishing in the kth position is c jk = f j(k). Thus finding the minimum-cost
assignment gives a sequence of the jobs that minimizes ∑

n
j=1 f j(C j).

Another variant of the minimum-cost flow problem is the transportation problem;
although we will not prove it, this variant is not a special case, but is entirely equiva-
lent to the minimum-cost flow problem. As in the assignment problem, the directed
graph is a complete directed bipartite graph, with arcs from sources to sinks, and
li j = 0 and ui j = ∞ for each arc. In the transportation problem, however, the sources
have arbitrary positive integer supplies, and the sinks have arbitrary negative integer
supplies. A variation of this problem allows the amount of flow entering each sink
i to be at most |bi|, rather than exactly |bi|. In this case ∑i∈V bi ≤ 0 in order for the
problem to have a feasible solution.

We can use this variation of the transportation problem to extend our algorithm
for the problem 1|p j = 1|∑ j f j to an algorithm for P|p j = 1|∑ j f j. As before, we
create a source node of supply 1 for each of the n jobs. If we have m machines, then
since the schedule will have no idle time, every job will complete by time dn/me,
and so we create a sink node for each of the dn/me possible times at which a job can
complete. Since at most m jobs can be scheduled to complete at a given time k, we
set bk = −m for sink k, and enforce that at most m units of flow can enter any sink.
Since the cost of the jth job finishing at time k is f j(k), we set c jk = f j(k). A basic
optimal solution x to this transportation problem is integer, so for each j, x jk = 1 for
some sink k (and 0 for all others). Thus we can construct a schedule of the same cost
as the flow by scheduling job j at time k on some machine. Because ∑

n
j=1 x jk ≤ m,

the schedule uses at most m machines at any given time k.
The area of network flows is very rich, and there are many other flow variants –

such as generalized flow and multicommodity flow – whose details are not as perti-
nent to the topic of this book. The notes at the end of the chapter contain suggested
further reading.

Dynamic programming. We now turn to dynamic programming, which is a tech-
nique for solving problems, rather than a class of problems, as in linear programming

2.1. Algorithmic techniques 13

and network flows. In particular, it is a method for solving multi-stage decision prob-
lems, in which choices must be made in a sequence of stages. The underlying idea
is that for such problems we can sometimes divide the decision in the jth stage into
several subproblems. These subproblems should have the property that given the op-
timum solutions to the subproblems in the (j−1)st stage, we can easily compute the
optimum solution to the subproblems in the jth stage. One of the subproblems of the
nth stage is the overall problem we want to solve, and thus the optimum sequence of
choices can be found.

Usually a dynamic programming algorithm for a problem is embodied in a multi-
dimensional array A(j, · · ·), with the additional coordinates indexing the subprob-
lems for the jth stage. Boundary conditions specify the values of A(0, · · ·), and
given the values of A(j− 1, · · ·), the values of A(j, · · ·) are easily computed. The
desired value is one of the entries of A(n, · · ·).

To illustrate this method, we will consider how it applies to the knapsack problem.
In the knapsack problem, we are given n items, each of which has a size s j ≥ 0 and
an integer value v j ≥ 0. We are also given a knapsack of capacity B. We assume
s j ≤ B for all items j. The goal is to find the subset of items of the greatest total
value that can be placed in the knapsack; that is, the sum of their sizes must not
exceed the capacity of the knapsack. The problem can be viewed as a multi-stage
decision problem, since we can consider the items in order, from 1 to n, and decide
whether or not to include the jth item in the knapsack.

Let us see how we can apply the dynamic programming technique to solve this
problem. The main difficulty is breaking the decision for the jth stage into useful
subproblems. In this case we consider the subproblems (j,s) of finding the most
valuable set of items in {1, . . . , j} that use total size, or space, no more than s. We
store the value of the most valuable such set in a two-dimensional array A(j,s),
where the first coordinate will range over the items 1 to n, and the second coordinate
will range over the possible total sizes of the items in the knapsack (from 0 to B).
Supposing that we can compute the values in the array A(j,s), then the value of the
optimum solution is the most valuable subset of all the items that fits in space at most
B; that is, the optimum value is A(n,B).

Now let us see how to set the boundary conditions and how to compute A(j, ·)
from A(j− 1, ·). Certainly A(0,s) = 0 for any s between 0 and B; that is, by using
no items, the most valuable set of items that uses space at most s has value 0. Now
suppose that we know the values of A(j−1,s) for 0≤ s≤B, and we want to compute
A(j,s). To achieve the most valuable subset of items from {1, . . . , j} that has size
at most s, either the jth item is used or it is not used. If it is not used, the most
valuable subset of items from {1, . . . , j} having space at most s must be the same as
the most valuable subset of items from {1, . . . , j−1} having space at most s; that is,
A(j,s) = A(j−1,s). If the jth item is used, then the value of the subset of items is v j
plus the most valuable subset of items from {1, . . . , j−1} that occupies space at most
s− s j if this amount of space is non-negative; that is, A(j,s) = v j +A(j− 1,s− s j)
if s− s j ≥ 0. The optimum choice of whether to use item j or not is whichever
maximizes the overall value; that is, A(j,s) = min[A(j− 1,s),v j +A(j− 1,s− s j)]

14 2. Tools from algorithms and complexity theory

1 For s← 0 to B
2 A(0,s)← 0
3 For j← 1 to n
4 For s← 0 to B
5 if s j ≤ s
6 A(j,s)←min(A(j−1,s),v j +A(j−1,s− s j))
7 else
8 A(j,s)← A(j−1,s).

Figure 2.3. Dynamic programming algorithm for the knapsack problem.

(if s− s j ≥ 0, otherwise A(j,s) = A(j−1,s)).
Given this discussion, the algorithm for computing the value of an optimal solu-

tion is straightforward, and we give it in Figure 2.3. If we would like to know the
set of items that gives this value, we can compute it from the array A(j,s) by back-
tracking through the decisions that were made. We leave this as an exercise for the
reader.

We can use this algorithm to solve the scheduling problem 1|d̄ j = d|∑ j w jU j,
since this scheduling problem is just a knapsack problem in which the capacity of
the knapsack is B = d, and each job corresponds to an item of size s j = p j and
value v j = w j. Minimizing the total weight of late jobs is equivalent to maximizing
the total weight of jobs that complete before the deadline d, so that a maximum-
weight set of jobs S that complete by time d corresponds to a maximum-weight set
of items whose total size is no more than d. In Chapter 5 we will see that the dynamic
programming algorithm for the knapsack problem can be extended to solve the more
general problem 1||∑ j w jU j.

We can improve on the algorithm of Figure 2.3 by observing that for a given j,
it is possible that A(j,s) is the same for many consecutive values of s; that is, the
most valuable subset of items of {1, . . . , j} that uses size at most s is the same for
sizes s = s′ up to s′′. Then rather than storing an entry for every value of s, we
can create a new array A′, where A′(j) contains a list (t1,w1),(t2,w2), . . . ,(tk,wk),
with the understanding that A(j,s) = wi for ti ≤ s < ti+1 (where tk+1 = B+ 1); in
other words, for each pair (ti,wi) there is a subset of items in {1, . . . , j} that has
value wi and uses space at most ti. Since it is the case that t1 < t2 < · · · < tk and
w1 < w2 < · · · < wk, the number of elements in the list is no more than B+ 1 and
no more than one plus the maximum possible value of the knapsack. Certainly the
maximum possible value of the knapsack is no more than V = ∑

n
j=1 v j. So the length

of the list is at most min(B,V)+1.
Given the list for A′(j−1), it is easy to compute the list for A′(j). For each pair

(ti,wi) in the list A′(j−1), we create a new pair (ti + s j,wi + v j) if ti + s j ≤ B, since
if it is possible to have a knapsack of value wi using space at most ti using a subset
of items from {1, . . . , j−1}, one can have a knapsack of value wi +v j using space at
most ti+s j using items from {1, . . . , j} by including item j to the previous knapsack.

2.2. Analysis of algorithms 15

1 A′(0)←{(0,0)}
2 for j← 1 to n
3 for each pair (t,w) in A′(j−1)
4 if t + s j ≤ B
5 add new pair (t + s j,w+ v j) to A′(j)
6 merge pairs from A′(j−1) into A′(j)
7 discard dominated pairs from A′(j)

Figure 2.4. Another dynamic programming algorithm for the knapsack problem.

We then merge the list of old pairs and new pairs to obtain a list (t ′1,w
′
1), . . . ,(t

′
l ,w
′
l)

with t ′1 ≤ t ′2 ≤ ·· · t ′l . We then check to see whether we can discard some pairs, since
in the final list it must be the case that t ′1 < t ′2 < · · · < t ′l and w′1 < w′2 < · · · < w′l .
Thus we discard any dominated pair (t ′i ,w

′
i); that is, any pair (t ′i ,w

′
i) such that there

exists another pair (t ′k,w
′
k) of value at least as great that uses no more space (w′k ≥ w′i

but t ′k ≤ t ′i). Clearly the resulting list is correct: if (t ′i ,w
′
i) is on the list, we can pack

items from a subset of {1, . . . , j} of value w′i in space t ′i . If we can pack items from
{1, . . . , j} of value w in space t, then either the packing uses item j or not; if not, the
old list of A′(j−1) implied that value w could be packed in space t, and if so, value
w−v j could be packed in space t− s j which was implied by the old list of A′(j−1),
and therefore one of the new pairs implies that value w can be packed in space t. We
summarize the new algorithm in Figure 2.4.

2.2. Analysis of algorithms

So far we have had little to say about the efficiency of the algorithmic techniques
described above, other than to give assurances that the techniques are efficient in
practice. In this section we would like to make those assurances somewhat more
precise, to the extent possible.

The caveat “to the extent possible” is necessary. When we have given algorithms,
they have been in English-like descriptions rather than specific computer programs,
since the algorithm is independent of a particular implementation of it, just as the
text of a play is independent of a particular staging. Yet of course the particular
implementation (computer language, choice of data structures, etc.) will affect the
efficiency of the algorithm. Even a particular implementation on a specific machine
will be affected by the compiler used, and even a given compilation of a particular
program targeted to a particular computer architecture will be affected by issues such
as cache size, memory latency, disk speed, and so forth.

Thus although we could in principle state how many “instructions” – arithmetic
operations, memory fetches and stores, comparisons, branches, etc. – need to be
executed by the English-like statements of our algorithms on a particular input, this
might not correspond precisely to the amount of time taken by a computer running

16 2. Tools from algorithms and complexity theory

some implementation of the algorithm on that input. Furthermore, the time taken by
each type of instruction might differ. For these reasons, we discuss the efficiency
of algorithms in terms of their order of growth, a somewhat cruder measure than
precise instruction counts. The order of growth indicates how the running time of an
algorithm varies as the size of its input varies (e.g. the number of jobs, the number
of machines, the size of the jobs). The order of growth of an algorithm is expressed
in terms of big-oh notation, which we define as follows.

Definition 2.8 [Big-oh notation]. Given two functions f ,g : N→ N, we say that
f (n) = O(g(n)) if there exist some positive constants c,n0 such that f (n) ≤ c · g(n)
for all n≥ n0.

Thus if an algorithm for a scheduling problem with n jobs and m machines executes
at most f (n,m) = 8nm2+5nm+6n+3m+2 instructions, we simplify this using big-
oh notation by saying that it takes O(nm2) time, or that its running time is O(nm2).
Sometimes we refer to the instruction counts as the time complexity of the algorithm.

When specifying the time complexity of an algorithm, we usually refer to its
worst-case behavior. For instance, one might have an algorithm that executes f (n)
instructions, where

f (n) =
{

c1n if n composite
c2n2 if n prime.

Then f (n) = O(n2), but it is not the case that f (n) = O(n). Hence we say that the
algorithm takes O(n2) time.

Let us now examine the time complexity of the algorithms in Figure 2.3 and 2.4.
First, we consider the algorithm of Figure 2.3. Lines 1–2 initialize the array A; each
time through the loop takes at most some constant c1 number of instructions; hence
these lines execute in O(B) time. Lines 3–8 calculate the array. The instructions in
lines 5–8 take at most some constant c2 number of instructions, which are executed
nB times, so that lines 3–8 take O(nB) time. The overall algorithm executes at most
c1B+c2nB instructions; thus the running time is O(nB). Now consider the algorithm
of Figure 2.4. Line 1 takes a constant d1 number of instructions. Lines 2–7 calculate
the array. Lines 4–5 take a constant d2 number of instructions, and are executed nL
times, where L is the maximum length of any list A′(j). We argued earlier that L ≤
min(B,V)+1, so that lines 2–5 take O(nmin(B,V)) time. It is possible to implement
lines 6 and 7 in d3L instructions, so that overall lines 2–7 take O(nmin(B,V)) time.
Thus the overall running time of the algorithm in Figure 2.4 is O(nmin(B,V)) time.

Sometimes it is useful to give a lower bound on the order of growth of the running
time of an algorithm. This can be done using big-omega notation.

Definition 2.9 [Big-omega notation]. Given two functions f ,g :N→N, we say that
f (n) = Ω(g(n)) if there exist some positive constants c,n0 such that f (n) ≥ c ·g(n)
for all n≥ n0.

The reader can verify that the knapsack algorithm in Figure 2.3 takes Ω(nB) time.
Recall our hypothetical algorithm that takes c1n instructions when n is composite
and c2n2 when n is prime. This algorithm takes Ω(n) time, but not Ω(n2) time.

2.2. Analysis of algorithms 17

Sometimes it is useful to capture the fact that, as in the case of the knapsack
algorithm of Figure 2.3, both f (n) = O(g(n)) and f (n) = Ω(g(n)); we do this with
big-theta notation.

Definition 2.10 [Big-theta notation]. Given two functions f ,g : N→N, we say that
f (n) = Θ(g(n)) if f (n) = O(g(n)) and f (n) = Ω(g(n)).

Since the knapsack algorithm in Figure 2.3 takes O(nB) time and Ω(nB) time, it
takes Θ(nB) time.

Big-oh notation is also used for the amount of memory (sometimes called space)
that an algorithm uses. For instance, the space required by the knapsack algorithm
given in Figure 2.3 is dominated by the space needed to store the array A(j,s). Since
there are n(B+1) items in this array, we say that the algorithm requires O(nB) space.
This amount is referred to the space complexity of the algorithm.

The complexity of the algorithmic techniques. We now turn to a discussion of the
time complexity of the algorithmic techniques discussed in the previous section. The
most popular algorithm for solving linear programs is called the simplex method, and
it has a number of variants. Recall that in our discussion of basic solutions to linear
programs, we observed that the simplex method moves from basic solution to basic
solution by swapping a variable set to 0 for a variable in the linear system. This step
is called pivoting, and the means by which simplex decides which two variables to
swap is called the pivot rule. Many textbook pivot rules can be shown to require
Ω(2n) pivots in the worst case, where n is the maximum of the number of rows and
columns, and thus the simplex method can take a large amount of time in the worst
case. However, these examples are pathological; in practice, the simplex method is
very fast, and problems with tens of thousands of variables and constraints are solved
routinely.

Interior-point methods constitute another class of algorithms for solving linear
programs. Interior-point algorithms have much better worst-case time complex-
ity than the simplex method: the fastest algorithm currently known needs to solve
O(
√

nL) linear systems, each of which takes O(n3) time in the worst case, where L
is the “size” of the linear program (that is, the number of bits needed to encode in bi-
nary the matrix A, the right-hand side b, and the objective function c). More practical
variants of interior-point methods have larger time complexity (O(nL) iterations in-
stead of O(

√
nL)), but in practice the number of iterations required for these variants

seems to be essentially constant, and indeed these algorithms sometimes outperform
the simplex method.

Many algorithms have been devised for solving the maximum flow problem.
As of the writing of this chapter, the algorithm for the maximum flow problem
with the lowest worst-case time complexity in most cases has a running time of
O(min(n2/3,m1/2)m log(n2

m) logU), where n is the number of vertices in the graph,
m is the number of edges, and U is size of the largest capacity. However, a class of al-
gorithms called push-relabel algorithms (also called preflow-push algorithms) have
been shown to work very well in practice, and appear to be faster than algorithms

18 2. Tools from algorithms and complexity theory

whose theoretical worst-case complexity is lower. The lowest known worst-case
complexity of a push-relabel algorithm is O(nm log(n2

m)), and hence is theoretically
faster than the previously mentioned algorithm only when U is very large. The notes
at the end of this chapter contain pointers to descriptions of these algorithms and
studies of them. Interestingly, it has been shown that the parametric maximum flow
problem can be solved in the same worst-case running time as a push-relabel algo-
rithm.

As is the case with maximum flow algorithms, there are many minimum-cost
flow algorithms. One type that has had successful implementations uses the simplex
method with a special pivot rule to solve the associated linear program; this type
is called a network simplex algorithm. Another type that works as well or better in
practice uses the push-relabel algorithm as a subroutine. Specialized algorithms have
been developed for the assignment and transportation problems, and again, many
different types of algorithms have been proposed. See the notes at the end of the
chapter for references.

2.3. Complexity theory and a notion of efficiency

Given the current set of algorithms for solving linear programming and network flow
problems as described above, it is natural to ask whether better algorithms might
exist. For example, is it inherent in the nature of the knapsack problem that all algo-
rithms to solve it must take Ω(nmin(B,V)) time? This asks whether the complexity
of the knapsack problem is such that no faster running time is possible. The study of
such questions is called complexity theory.

There is an immediate difficulty with posing such questions, since the time bound
given will depend on our model of a computer. For instance, one can imagine a par-
allel computer executing the knapsack algorithm in Figure 2.3 with O(n) processors.
Such a computer could execute the loop in lines 1–2 in a constant number of in-
structions. Perhaps a parallel machine with a reasonable number of processors could
solve the knapsack problem in O(n) time.

There are two possible ways to make the question well-posed. One is to fix a
model of a computer. We have so far implicitly considered a single processor ma-
chine in which each arithmetic operation, comparison, and memory access takes a
single instruction, regardless of the size of the numbers involved. This model is
known as the random access machine, or the RAM model of computation. We can
consider the inherent time complexity of problems with respect to the RAM.

Another way to make the question well-posed is to broaden it to whether a given
problem has an efficient algorithm or not, and define efficiency in such a way that it
is invariant under any reasonable model of a computer. This line of thinking has led
to an emphasis on the class of polynomial-time algorithms.

Definition 2.11 [Polynomial-time algorithm]. An algorithm for a problem is said
to run in polynomial time, or said to be a polynomial-time algorithm, with respect

2.3. Complexity theory and a notion of efficiency 19

to a particular model of computer (such as a RAM) if the number of instructions
executed by the algorithm can be bounded by a polynomial in the size of the input.

More formally, let x denote an instance of a given problem; for example, an instance
of the knapsack problem is the number n of items, the numbers s j and v j giving the
sizes and values of the items, and the number B giving the size of the knapsack. To
present the instance as an input to an algorithm A for the problem, we must encode
it in bits in some fashion; let |x| be the number of bits in the encoding of x. Then |x|
is called the size of the instance or the instance size. Furthermore, we say that A is
a polynomial-time algorithm if there exists a polynomial p(n) such that the running
time of A is O(p(|x|)).

We consider an algorithm to be efficient if it runs in polynomial time, and we
consider a problem to be efficiently solvable if it has a polynomial-time algorithm.
This is an imperfect measure: for instance, we have already noted that the simplex
method has a worst-case running time that is exponential in the size of the instance,
but is efficient in practice. However, the correspondence between theory and practice
is good enough that the equivalence is useful.

One benefit of equating efficiency with polynomial time is that given reasonable
models of a computer, efficiency is invariant: that is, an algorithm that runs in poly-
nomial time on one will run in polynomial time on another. Of course, the two
polynomials might be different for the two different models of computation. For
instance, consider any parallel RAM with a number of processors at most a polyno-
mial in the size of the instance. This parallel machine can achieve a speed-up factor
of at most the number of processors it has; thus a polynomial-time algorithm on an
ordinary RAM will run in polynomial-time on a parallel RAM and vice versa.

It will be useful in later sections to refer to the class of problems P. The class
P contains all decision problems that have polynomial-time algorithms. A decision
problem is one whose output is either “Yes” or “No”. It is not difficult to think of
decision problems related to optimization problems. For instance, consider a deci-
sion variant of the knapsack problem in which, in addition to inputs B, and v j and s j
for every item j, there is also an input C, and the problem is to output “Yes” if the
optimum solution to the knapsack instance has value at least C, and “No” otherwise.
The instances of a decision problem can be divided into “Yes” instances and “No”
instances; that is, instances in which the correct output for the instance is “Yes” (or
“No”).

Such a decision problem for the knapsack problem is clearly no harder than the
optimization version, but also is no easier: if we had a polynomial-time algorithm for
the decision problem, we would also be able to get a polynomial-time algorithm for
the optimization problem. To see this, first observe that we can use an algorithm for
the decision problem to determine the optimum value Z by performing a bisection
search over the range [0,V] (recall that V = ∑

n
j=1 v j so that V is an upper bound on

the value of the knapsack). Once we have determined the optimum value Z, we can
loop through the items, using the algorithm for the decision problem to see if the
value of the optimum solution remains Z when the jth item is removed from the

20 2. Tools from algorithms and complexity theory

instance. If so, we omit item j for the remaining iterations of the loop. The items
remaining at the end of the loop must belong to an optimal knapsack, and thus we
have determined an optimal knapsack. We use O(n+ logV) calls to the decision
algorithm, so if that algorithm runs in polynomial time, there is a polynomial-time
algorithm for the optimization problem.

Let us now return to the question of the complexity of the knapsack problem:
does it have a polynomial-time algorithm? At first glance, it would appear that the
answer is yes, since we have an O(nB) algorithm, where n and B are part of the input.
However, this gets us into some of the subtlety of the definition. Usually the data put
into a computer are encoded in binary, so that the size of a number B is dlog2 Be bits.
Thus the running time O(nB) is exponential in the size of B, not polynomial. If we
encode the numeric inputs to the knapsack problem in unary rather than binary (that
is, we use B bits to encode B), then the running time O(nB) is polynomial in the
instance size. Algorithms which have this property are called pseudopolynomial.

Definition 2.12 [Pseudopolynomial-time algorithm]. An algorithm for a problem
is said to run in pseudopolynomial time, or said to be a pseudopolynomial-time al-
gorithm, with respect to a particular model of computer (such as a RAM) if the
number of instructions executed by the algorithm can be bounded by a polynomial
in the size of the instance when the numeric data is encoded in unary.

2.4. Complexity theory and a notion of hardness

So, does the knapsack problem have a polynomial-time algorithm? As of the writing
of this chapter, the answer is unknown, but there are substantial reasons to think not.
Similar evidence suggests that many scheduling problems of interest do not have
polynomial-time algorithms. In this section, we present this evidence via the class of
problems NP, and the theory of NP-completeness.

Roughly speaking, the class NP is the set of all decision problems such that for
any “Yes” instance of the problem, there is a short, easily verifiable “proof” that
the answer is “Yes”. Additionally, for each “No” instance of the problem, no such
“proof” is convincing. What kind of “short proof” do we have in mind? Take the
example of the decision variant of the knapsack problem given above. For any “Yes”
instance, in which there is a feasible subset of items of value at least C, a short proof
of this fact is a list of the items in the subset. Given the knapsack instance and the
list, an algorithm can quickly verify that the items in the list have total size at most
B, and total value at least C. Note that for any “No” instance, then no possible list of
items will be convincing.

We now attempt to formalize this rough idea as follows. A short proof is one
whose encoding is bounded by some polynomial in the size of the instance. An
easily verifiable proof is one that can be verified in time bounded by a polynomial in
the size of the instance and the proof. This gives the following definition.

Definition 2.13 [NP]. A decision problem is said to be in the problem class NP if

2.4. Complexity theory and a notion of hardness 21

there exists a verification algorithm A(·, ·) and two polynomials, p1 and p2, such
that:

1. for every “Yes” instance x of the problem, there exists a proof y with |y| ≤
p1(|x|) such that A(x,y) outputs “Yes”;

2. for every “No” instance x of the problem, for all proofs y with |y| ≤ p1(|x|),
A(x,y) outputs “No”;

3. the running time of A(x,y) is O(p2(|x|+ |y|)).

NP stands for non-deterministic polynomial time. Most of the scheduling problems
in this book have decision variants that are in the class NP.

Observe that nothing precludes a decision problem in NP from having a polynomial-
time algorithm. However, the central problem of complexity theory is whether ev-
ery problem in NP has a polynomial-time algorithm. This is usually expressed as
the question of whether the class P of decision problems with polynomial-time algo-
rithms is the same as the class NP, or, more succinctly, as whether P = NP. Although
this question has been a matter of intense research for almost thirty years, its answer
is unknown as of the writing of this chapter.

To tackle this problem, in the early 1970s several researchers showed that there are
problems in NP that are representative of the entire class, in the sense that if they have
polynomial-time algorithms, then P = NP, and if they do not, then P 6= NP. These
are the NP-complete problems; we will be more precise about their definition in a
moment. Since then, thousands of problems have been shown to be NP-complete,
yet none of them is known to have a polynomial-time algorithm. Most complexity
theorists take this as strongly suggestive evidence that P 6= NP. However, complexity
theory is not yet able to prove this inequality, and thus the strongest statement that
can be made is that it seems likely that every NP-complete problem does not have a
polynomial-time algorithm.

Let us now turn to the definition of NP-completeness. To do this, we will need the
notion of a polynomial-time reduction.

Definition 2.14 [Polynomial-time reduction]. Given two decision problems A and
B, there is a polynomial-time reduction from A to B (or A reduces to B in polynomial
time) if there is a polynomial-time algorithm that takes as input an instance of A and
produces as output an instance of B and has the property that a “Yes” instance of B
is output if and only if a “Yes” instance of A is input.

We will use the symbol � to denote a polynomial-time reduction so that we write
A � B if A reduces to B in polynomial time. Sometimes the symbol ≤P

m is used
in the literature to denote a polynomial-time reduction. We can now give a formal
definition of NP-completeness.

Definition 2.15 [NP-complete]. A problem B is NP-complete if B is in NP, and for
every problem A in NP, there is a polynomial-time reduction from A to B.

22 2. Tools from algorithms and complexity theory

The following theorem is now easy to show.

Theorem 2.16. Let B be an NP-complete problem. If B has a polynomial-time algo-
rithm, then P = NP.

Proof. Given any problem A in NP, we can create a polynomial-time algorithm for
it as follows: the algorithm takes an instance x of A as input, uses the polynomial-
time reduction from A to B to transform it into an instance y of B, then uses the
polynomial-time algorithm for B on that instance. The algorithm outputs “Yes” if
and only if the algorithm for B outputs “Yes” for y. First, observe that the algorithm
outputs “Yes” on x if and only if x is a “Yes” instance of A, by the properties of
the reduction. Second, we will show that A runs in polynomial time. Suppose that
the running time for the reduction algorithm is bounded by polynomial p1(|x|) and
the running time of the algorithm for B is bounded by polynomial p2(|y|). Certainly
|y| ≤ p1(|x|), since the running time for the reduction must include the time spent
writing down the bits of y. Thus the overall running time is p1(|x|)+ p2(p1(|x|)),
which is a polynomial in |x|. 2

A useful property of NP-complete problems is that once we have an NP-complete
problem B it is often easy to prove that other problems are also NP-complete. As we
will see, all we have to do is show that a problem A is in NP, and that B � A. This
follows as an easy corollary of the transitivity of polynomial-time reductions.

Theorem 2.17. Polynomial-time reductions are transitive: that is, if A� B and B�
C, then A�C.

Corollary 2.18. If A is in NP, B is NP-complete, and B � A, then A is also NP-
complete.

Proof. All we need to show is that for each problem C in NP, there is a polynomial-
time reduction from C to A. Because B is NP-complete, we know that C � B. By
hypothesis, B� A. By Theorem 2.17, C � A. 2

Proof of Theorem 2.17. Since A� B, there is an algorithm such that for some poly-
nomial p1 the algorithm takes an instance x of A as input and produces an instance
y of B in time no more than p1(|x|), and y is a “Yes” instance of B if and only if x
is a “Yes” instance of A. Furthermore, |y| ≤ p1(|x|). Because B�C, there exists an
algorithm such that for some polynomial p2 an instance y of B can be transformed
into an instance z of C in time no more than p2(|y|), such that z is a “Yes” instance
of C if and only if y is a “Yes” instance of B. Additionally, |z| ≤ p2(|y|). Thus there
is an algorithm such that any instance x of A can be transformed into an instance z of
C in time no more than p3(|x|) such that x is a “Yes” instance of A if and only if z is
a “Yes” instance of C, where p3(·) is the polynomial p2(p1(·)). Thus A�C. 2

Theorem 2.18 shows that given one NP-complete problem, it is possible to prove
that other problems are NP-complete. How do we prove a problem is NP-complete
in the first place? Ingenious proofs providing the first NP-complete problems were
developed independently by Cook and Levin in the early 1970s, but it is beyond the

2.4. Complexity theory and a notion of hardness 23

scope of this chapter to provide any details of the proofs. Interested readers can
consult the chapter notes for references. A paper of Karp then showed that many
problems of interest are NP-complete, and since then thousands of problems have
been shown to be NP-complete. We list a few of them below.

Partition
Input: Positive integers a1, . . . ,an such that ∑

n
i=1 ai is even

Question: Does there exist a partition of {1, . . . ,n} into sets S and T such that
∑i∈S ai = ∑i∈T ai?

3-Partition
Input: Positive integers a1, . . . ,a3n,b, such that b/4< ai < b/2 for all i, and ∑

3n
i=1 ai =

nb.
Question: Does there exist a partition of {1, . . . ,3n} into n sets Tj such that ∑i∈Tj ai =
b for all j = 1, . . . ,n? (By the condition on the ai, each Tj must contain exactly 3
elements.)

Clique
Input: An undirected graph G = (V,E), and a positive integer K
Question: Does there exist a set of vertices S ⊆ V with |S| ≥ K such that for all
i, j ∈ S with i 6= j, then (i, j) ∈ E? (Such a set S is called a clique or an |S|-clique).

The decision version of the knapsack problem given at the beginning of the section
is also NP-complete. However, we know that this problem has a pseudopolynomial-
time algorithm. This brings up an interesting distinction among the NP-complete
problems. Some NP-complete problems, such as the knapsack and partition prob-
lems, are NP-complete only when it is assumed that their numeric data is encoded in
binary. As we’ve seen, the knapsack problem has a polynomial-time algorithm if the
input is encoded in unary; so does the partition problem. Other problems, however,
such as the 3-partition problem above, are NP-complete even when their numeric
data is encoded in unary. We call such problems strongly NP-complete, or, some-
times, unary NP-complete. In contrast, problems such as the knapsack and partition
problems are called weakly NP-complete or binary NP-complete.

Given the NP-completeness of the problems above, we give proofs showing the
NP-completeness of three different scheduling problems. From here on we some-
times use the notation α|β|γ to refer to the decision version of the problem as well as
the optimization version. The reader should be able to tell which version is intended
from the context.

Theorem 2.19. The problem 1|r j|Lmax is NP-complete.

Proof. The decision version of 1|r j|Lmax has an input parameter B, and a “Yes”
instance is one for which the maximum lateness of an optimal schedule is no more
than B. Certainly this problem is in NP: a short proof for the problem is a list of
the starting time of every job. Because each start time is at most max j r j +∑

n
j=1 p j,

24 2. Tools from algorithms and complexity theory

the starting time of each is a number whose size is at most a polynomial in the
instance size. Since there are n start times, the size of the proof can be bounded by
a polynomial in the size of the instance. We can verify in polynomial time whether
such a list is a valid schedule and whether Lmax ≤ B, and output “Yes” or “No” as
appropriate.

To prove that the problem is NP-complete, we give a polynomial-time reduction
to it from the partition problem. Given an instance of the partition problem a1, . . . ,an,
we construct a scheduling instance with n+ 1 jobs. Let A = ∑

n
i=1 ai. Job j, for 1 ≤

j ≤ n, has processing time p j = a j, release date r j = 0, and deadline d̄ j = A+ 1.
For job n+ 1, set pn+1 = 1, rn+1 = A/2, and d̄n+1 = A/2+ 1. Finally, set B = 0.
Certainly this reduction can be performed in polynomial time.

We now need to show that this is a “Yes” instance of 1|r j|Lmax if and only if
a1, . . . ,an is a “Yes” instance of the partition problem. If a1, . . . ,an is a “Yes” instance
of the partition problem, then there are two sets S and T that partition {1, . . . ,n} such
that ∑i∈T ai = ∑i∈S ai = A/2. Thus the jobs in S can be scheduled from time 0 to
time A/2, job n+1 from time A/2 to A/2+1, and the jobs in T from time A/2+1
to A+1; in this case, each job will complete by its deadline. Hence the constructed
instance of 1|r j|Lmax is a “Yes” instance.

Similarly, if the constructed instance of 1|r j|Lmax is a “Yes” instance, then job
n+1 must be processed from time A/2 to A/2+1. Some set S of jobs is processed
from time 0 to A/2, and the remaining set T is processed from time A/2+1 to A+1.
Then S and T partition {1, . . . ,n} and ∑i∈S ai ≤ A/2 and ∑i∈T ai ≤ A/2. Hence
∑i∈S ai = ∑i∈T ai = A/2, and a1, . . . ,an is a “Yes” instance of the partition problem.
2

Theorem 2.20. The problem P||Cmax is NP-complete.

Proof. The decision version of the problem P||Cmax has an input B, and the instance
is a “Yes” instance if Cmax ≤ B in an optimal schedule. It is easy to show that this
problem is in NP: the short proof contains for each job the starting time of the job
and machine on which the job executes. As argued above, this proof has size that can
be bounded by a polynomial in the instance size. A polynomial-time algorithm can
check whether this is a feasible schedule and whether Cmax ≤ B and output “Yes” or
“No” as appropriate.

To prove that the problem is NP-complete, we give a polynomial-time reduction
to it from the 3-partition problem. Given an instance of the 3-partition problem,
a1, . . . ,a3n, and b, construct a scheduling instance with 3n jobs and n machines. Each
job j has processing time p j = a j, and B is set to b. Certainly this reduction can be
performed in polynomial time.

We now need to show that this a “Yes” instance of P||Cmax if and only if a1, . . . ,a3n,
b is a “Yes” instance of the 3-partition problem. If a1, . . . ,a3n,b is a “Yes” instance
of 3-partition problem, then there are n sets Tj that partition {1, . . . ,3n} such that
∑i∈Tj ai = b. For each set Tj, schedule the jobs i ∈ Tj in any order on the jth machine
from time 0 to time ∑i∈Tj ai = b. This implies that Cmax = b, and thus the constructed
instance of P||Cmax is a “Yes” instance.

2.4. Complexity theory and a notion of hardness 25

Similarly, suppose the constructed instance of P||Cmax is a “Yes” instance. Let Tj
denote the set of indices of jobs processed on the jth machine. Since the scheduling
instance is a “Yes” instance, it must be the case that ∑i∈Tj ai≤ b for each j, 1≤ j≤ n.
But since ∑

n
j=1 ∑i∈Tj ai = ∑

3n
i=1 ai = nb, it must be the case that ∑i∈Tj ai = b for each

j, 1≤ j ≤ n. Hence a1, . . . ,a3n,b is a “Yes” instance of the 3-partition problem. 2

One consequence of the proof of Theorem 2.20 is that P||Cmax is strongly NP-
complete. This follows since 3-partition is strongly NP-complete; that is, it is NP-
complete even if the ai and b are encoded in unary. We can use the reduction of the
Theorem 2.20 to reduce instances of the 3-partition problem with data encoded in
unary to instances of P||Cmax with data encoded in unary in polynomial time. Thus
the problem P||Cmax with data encoded in unary is also NP-complete.

Theorem 2.21. The problem P|prec, p j = 1|Cmax is NP-complete.

Proof. The decision version of P|prec, p j = 1|Cmax has an input B, and an instance
is a “Yes” instance if Cmax ≤ B in an optimal schedule. It is easy to verify that this
problem is in NP.

We now give a polynomial-time reduction from the clique problem to P|prec, p j =
1|Cmax. Given the input graph G = (V,E) and the bound K of the clique problem,
create one job v for each vertex v ∈V and one job e for each edge e ∈ E. Set v→ e
if v is one of the two endpoints of e. Set N = |V |, M = |E|, and L = K(K− 1)/2,
so that L is the number of edges in a clique of size K. For the moment we leave the
number of machines m unspecified, and create extra “dummy” jobs: m−K jobs Xa,
m− (L+N−K) jobs Yb, and m− (M−L) jobs Zc. We set Xa→ Yb→ Zc for every
a,b,c. Set m to guarantee that there will be at least one Xa job, one Yb job, and one
Zc job; that is, m = max{K,L+N−K,M−L}+1. Finally, set B = 3.

For this instance of P|prec, p j = 1|Cmax, first observe the following: in any sched-
ule of length 3, it must be the case that the dummy jobs Xa are scheduled at time 0,
the jobs Yb at time 1, and the jobs Zc at time 2, leaving only K machines free at time
0, L+N−K free at time 1, and M−L free at time 2.

We now show that this is a “Yes” instance of P|prec, p j = 1|Cmax if there is a
clique of size at least K in G. If this is the case, then the non-dummy jobs can be
completed by time 3 by scheduling K of the jobs v corresponding to K vertices of the
clique at time 0, scheduling L of the jobs e corresponding to the L edges between the
K vertices of the clique at time 1, scheduling the remaining N−K jobs corresponding
to vertices at time 1, and scheduling the remaining M−L jobs corresponding to edges
at time 2.

Finally, this instance is a “No” instance of P|prec, p j = 1|Cmax if there is no clique
of size K in G. In this case, then even if K jobs v are scheduled at time 0, at most L−1
jobs e can be scheduled at time 1. Even if the remaining N−K jobs v are scheduled
at time 1, this means there are still M− (L−1) jobs e left to schedule at time 2, but
there is only enough room for M−L jobs. Hence not all jobs can complete by time
3, and therefore the constructed instance of P|prec, p j = 1|Cmax is a “No” instance.
2

26 2. Tools from algorithms and complexity theory

We conclude this section by defining the term NP-hard, which can be applied to
either optimization or decision problems. Roughly speaking, it means “as hard as
the hardest problem in NP”. To be more precise, we need to define an oracle. Given
a decision or optimization problem A, we say that an algorithm has A as an oracle
(or has oracle access to A) if we suppose that the algorithm can solve instance of A
with a single instruction.

Definition 2.22 [NP-hard]. A problem A is NP-hard if there is a polynomial-time
algorithm for an NP-complete problem B when the algorithm has oracle access to A.

The term “NP-hard” is most frequently applied to optimization problems whose cor-
responding decision problems are NP-complete; it is easy to see that such optimiza-
tion problems are indeed NP-hard. It is also easy to see that if A is NP-hard and there
is a polynomial-time algorithm for A, then P = NP.

2.5. Coping with NP-completeness

We now turn from complexity theory back to algorithmic techniques. We have seen
that the theoretical measure of whether an optimization problem is efficiently solv-
able is whether it has a polynomial-time algorithm, and have seen that many schedul-
ing problems are NP-complete and thus unlikely to have such algorithms. Yet such
problems continue to arise in practice and need solution, whether they have efficient
algorithms or not.

What then can be done? In this section, we explore some of the possible answers
to this question. One possibility is to give an efficient heuristic that does not always
find an optimal solution to the problem, but does find one that is “good enough”. An
approximation algorithm is a type of heuristic that comes with a proven performance
guarantee. Another possibility is to give an algorithm that finds the optimal solution,
and although it is not guaranteed to run in polynomial time, it runs quickly enough
for instances arising in practice. Some such algorithms use branch-and-bound tech-
niques, which are discussed below.

One last possibility is to make probabilistic statements about the kinds of in-
stances that arise in practice, and then design algorithms that with high probability
run quickly and find a good or optimal solution. We will not discuss probabilistic
techniques in this section, although this approach is considered in Chapter 9.

Approximation algorithms. Although there are many heuristics and metaheuristic
techniques for scheduling problems (such as simulated annealing), in this chapter
we will only consider approximation algorithms. An approximation algorithm for
an optimization problem is one that runs in polynomial time, and is guaranteed to
provide a solution whose value is close to the optimum value. If the algorithm pro-
duces a solution whose value is always within a factor of α of the value of an optimal
solution, then the algorithm is called an α-approximation algorithm. The value α is
called the performance guarantee or the approximation factor of the algorithm. In
this chapter, we will use the convention that α > 1 for minimization problems, and

2.5. Coping with NP-completeness 27

α < 1 for maximization problems. For example, a 2-approximation algorithm for a
minimization problem produces solutions of value no more than twice the optimum
value, while a 1

2 -approximation algorithm for a maximization problem produces a
solution of value at least 1

2 the optimum value. However, no standard convention
exists for maximization problems, and in the literature it is common to see 1/α used
as the performance guarantee so that the 1

2 -approximation algorithm above would
also be referred to as a 2-approximation algorithm.

Sometimes it is possible to give a family of approximation algorithms that can
produce solutions whose value comes arbitrarily close to the optimum value. That is,
for each ε > 0, we can give a (1+ε)-approximation algorithm Aε for a minimization
problem or a (1− ε)-approximation algorithm for a maximization problem. The
running time of the family of algorithms {Aε} may depend on ε in some nasty way
(e.g., it may be exponential in 1/ε), but since ε is a fixed constant for each algorithm
Aε this does not matter. We call such a family a polynomial-time approximation
scheme, sometimes abbreviated as PTAS.

Definition 2.23 [Polynomial-time approximation scheme]. A polynomial-time ap-
proximation scheme (PTAS) is a family of algorithms {Aε} for an optimization prob-
lem such that for each ε> 0, Aε is a (1+ε)-approximation algorithm (for a minimiza-
tion problem) or a (1− ε)-approximation algorithm (for a maximization problem).

If a family of algorithms is a polynomial-time approximation scheme, and it is
also the case that the running time of the family is also polynomial in 1/ε, we call
the family a fully polynomial-time approximation scheme, sometimes abbreviated as
FPTAS or FPAS.

Definition 2.24 [Fully polynomial-time approximation scheme]. If {Aε} is a poly-
nomial-time approximation scheme such that the running time of the family of algo-
rithms is polynomial in 1/ε, then {Aε} is called a fully polynomial-time approxima-
tion scheme.

To illustrate these ideas, we show how we can obtain a fully polynomial-time
approximation scheme for the knapsack problem (and thus for the problem 1|d̄ j =
d|∑w jU j). In Figure 2.4 of Section 2.1, we gave a dynamic programming algo-
rithm for the knapsack problem that requires O(nmin(B,V)) time, where n is the
number of items, B is the size of the knapsack, and V = ∑

n
i=1 v j is the maximum

possible value of the knapsack. If we could transform any instance of the knapsack
problem into one for which the optimum solution was not too different in value, and
for which V was polynomial in n and 1/ε, then in time polynomial in the instance
size we could find the optimum of the transformed instance, and it would be a good
approximation of the original optimum solution. This is precisely what we do in
our fully polynomial-time approximation scheme for the knapsack problem. The al-
gorithm shown in Figure 2.5 rounds the values v j down to the nearest multiple of
εW/n, where W is the maximum value of any item; call these new values v′j. Then
V ′ = ∑

n
j=1 v′j = ∑

n
j=1b

v j
εW/nc ≤ n2/ε, so that invoking the dynamic programming al-

gorithm on the transformed instance takes O(nV ′) = O(n3/ε) time. We now only

28 2. Tools from algorithms and complexity theory

1 W ← 0
2 For j← 1 to n
3 If v j >W
4 W ← v j
5 K← εW/n
6 For j← 1 to n
7 v′j← bv j/Kc
8 Run dynamic programming algorithm in Figure 2.4 on instance with

sizes s j and values v′j.

Figure 2.5. Fully polynomial-time approximation scheme for the knapsack problem.

need to show that the value of the solution found on the transformed instance is close
to the optimum value of the original instance.

Theorem 2.25. The algorithm in Figure 2.5 produces a solution of value at least
(1− ε) times the optimum value.

Proof. Let S be the set of items found by running the algorithm of Figure 2.4 with
the modified values v′j = bv j/Kc, where K = εW/n. Let O be an optimal set of items
for the original instance, and let OPT denote its value. We know that W ≤ OPT,
since one possible knapsack is to take the most valuable item (recall that s j ≤ B for
all items j). We also know, by the definition of the v′j, that

Kv′j ≤ v j < K(v′j +1), (2.5)

which implies that Kv′j > v j−K. Then

∑
j∈S

v j ≥ K ∑
j∈S

v′j (by (2.5))

≥ K ∑
j∈O

v′j (since S is an optimal solution for the values v′j)

≥ ∑
j∈O

v j−|O|K (by (2.5))

≥ ∑
j∈O

v j−nK

= OPT − εW

≥ (1− ε)OPT.

2

Sometimes it is possible to show that a particular performance guarantee α cannot
be achieved unless P = NP; that is, we can’t even get an approximate solution whose
value is within a factor α of the optimum in polynomial time unless we could solve
the problem optimally in polynomial time. For instance, it is not difficult to show that

2.5. Coping with NP-completeness 29

under quite reasonable conditions, no optimization problem whose decision variant
is strongly NP-complete can have a fully polynomial-time approximation scheme.

Theorem 2.26. Given an optimization problem whose decision version is strongly
NP-complete, let |x|u denote the length of the encoding of an instance x with the
numeric data encoded in unary. Let OPT(x) denote the optimum value of the instance
x. If OPT(x) is an integer-valued function, and there exists a polynomial p such
that OPT(x) < p(|x|u) for all instances x, then there is no fully polynomial-time
approximation scheme for the problem unless P = NP.

Proof. Assume the problem is a minimization problem; a trivially modified proof
will work for a maximization problem. The decision version of the problem asks
whether or not OPT(x) ≤ B for an instance (x,B). Suppose there is a fully polyno-
mial-time approximation scheme for the problem. For a given instance x, set ε =
1/p(|x|u). Then the fully polynomial-time approximation scheme returns a solution
of value between OPT(x) and

(1+ ε)OPT(x) =
(

1+
1

p(|x|u)

)
OPT(x)< OPT(x)+1.

Since OPT(x) is integer valued, the algorithm returns a solution of value OPT (x).
Thus we can correctly decide if OPT(x)≤ B. Furthermore, the algorithm takes time
polynomial in |x| and 1

ε
= p(|x|u), which is polynomial in |x|u. However, the deci-

sion variant is NP-complete even if the instance is encoded in unary, so we have a
polynomial-time algorithm to decide an NP-complete problem, implying P = NP. 2

As an example of the applications of this theorem, consider the problem P||Cmax.
The makespan of an optimal schedule is at most ∑

n
j=1 p j. If the data for P||Cmax

is encoded in unary, then certainly the encoding will require at least ∑
n
j=1 p j bits to

represent all the processing times p j. Thus OPT(x) < |x|u + 1, and one condition
of the theorem is met. The other condition of the theorem is met since the decision
version of P||Cmax is strongly NP-complete. Thus there is no FPTAS for P||Cmax
unless P = NP.

Sometimes a proof of NP-completeness will imply that no α-approximation algo-
rithm can exist for a given α unless P = NP. As an example, we can use the proof of
Theorem 2.21 to show the following theorem.

Theorem 2.27. There can be no α-approximation algorithm for P|prec, p j = 1|Cmax
with α < 4/3 unless P = NP.

Proof. In the proof of Theorem 2.21, we showed that a “Yes” instance of the clique
problem could be mapped to an instance of P|prec, p j = 1|Cmax with makespan 3,
and a “No” instance was mapped to an instance with makespan greater than 3. Since
p j = 1 for all jobs, an instance with makespan greater than 3 must have makespan
at least 4. Now suppose we have an α-approximation algorithm for P|prec, p j =
1|Cmax with α < 4/3. Then a polynomial-time algorithm for the clique problem

30 2. Tools from algorithms and complexity theory

is as follows: given an instance of the clique problem, transform the instance into
an instance of P|prec, p j = 1|Cmax as in Theorem 2.21 and run the α-approximation
algorithm. If the approximation algorithm gives a schedule of length 3, output “Yes”,
otherwise “No”. The algorithm runs in polynomial time, and gives the correct answer
since whenever it is given a “Yes” instance of the clique problem, the approximation
algorithm creates a schedule of length less than 4

3 ·3= 4, which must be a schedule of
length 3. Thus the algorithm correctly outputs “Yes”. If the algorithm is given a “No”
instance of the clique problem, the makespan of the schedule must be at least 4, and
so the algorithm correctly returns “No”. Thus we cannot have an α-approximation
algorithm for P|prec, p j = 1|Cmax for α < 4/3 unless P = NP.2

Similar theorems can be shown for other scheduling problems; see Chapters 11–
13 for examples.

Branch and bound. Another approach to dealing with NP-complete problems is to
guarantee optimality but not efficiency, rather than guaranteeing efficiency but not
optimality. One technique of this type is called branch-and-bound. This technique
is a combination of an algorithm which searches the space of all possible solutions
to a problem (the “branch” part) and an algorithm that bounds the optimum value, to
rule out parts of the search space (the “bound” part). More sophisticated variations
of this technique have been developed (e.g. branch-and-cut, branch-and-price), but
we will only discuss the most basic version.

We begin by showing how this technique can be applied to the knapsack problem.
First, we formulate the problem as an integer program:

Max
n

∑
j=1

v jx j

subject to:
n

∑
j=1

s jx j ≤ B

x j ∈ {0,1} 1≤ j ≤ n.

Replacing the constraints x j ∈ {0,1} with constraints 0 ≤ x j ≤ 1 gives a linear pro-
gramming relaxation. Solving this LP is our “bounding” algorithm, since the optimal
value of this LP solution is an upper bound on the cost of an optimal solution. In fact,
the optimal solution to this LP can be obtained easily: suppose the items are indexed
such that v1/s1 ≥ v2/s2 ≥ ·· · ≥ vn/sn, and ∑

k−1
j=1 s j ≤ B, but ∑

k
j=1 s j > B. Then an

optimal LP solution will set x1 = x2 = · · · = xk−1 = 1, xk+1 = xk+2 = · · · = xn = 0,
and xk =

1
sk

(
B−∑

k−1
j=1 sk

)
. If xk = 0, then the solution is integral, and the solution is

an optimal solution to the knapsack problem as well.
If xk 6= 0, then we enter our “branching” algorithm. We create the two subprob-

lems of our knapsack problem, one in which the kth item cannot be included in the
knapsack (equivalent to setting xk = 0) and the other in which the kth item must be
included in the knapsack (equivalent to xk = 1); this latter problem is equivalent to a

2.5. Coping with NP-completeness 31

knapsack problem with item k omitted and a knapsack of capacity B− sk. Observe
that if we can find the solution to these two subproblems, then whichever solution
has the maximum value is the optimal solution to the original knapsack problem,
since the kth item must either be included or excluded. We say that the two subprob-
lems partition the solution space of the original problem. Since both subproblems
are knapsack problems, we can apply the same approach as above to find their solu-
tion; eventually either the LP relaxation returns an integer solution, or is infeasible,
in which case we no longer need to consider the subproblem.

This process is usually described in terms of a tree. The tree’s root corresponds to
the original knapsack problem, the root’s children to the subproblems of the original
problem, and in general the children of a node correspond to the subproblems of that
node.

This overall algorithm might be quite slow, but the following ideas can be used
to speed it up. We can keep track of the value of the incumbent solution, the best
integral solution found thus far. If we reach a subproblem such that the value of the
LP relaxation for that subproblem is less than the value of the incumbent solution,
then we do not need to find an integral solution to that subproblem; whatever it is, it
will not be the solution to the original problem because it will have value less than
that of the incumbent solution. So we can “cut off” this part of the solution space;
we say that the node in the tree corresponding to this subproblem has been fathomed.
Obviously the more nodes we can fathom, the less work we will have to do. Since we
do not initially have any integral solution to the problem (and we might have to solve
many subproblems before we find one), it is common to run a heuristic either before
or immediately after solving initial LP relaxation of the original problem, so that we
have some incumbent solution with which to cut off parts of the solution space. For
example, we can run the polynomial-time approximation scheme for knapsack of the
previous section to get a good initial incumbent solution.

The discussion above illustrates one way of applying branch-and-bound to a par-
ticular problem, the knapsack problem. The ideas there can be generalized in a num-
ber of different ways. For instance, we needn’t use a linear programming relaxation
of an integer programming formulation of the problem of interest; we can also use
some other easily computed bound on the value of an optimal solution, as long as we
know when the bound is equal to the value of an optimal solution. In the example
above, we “branched” on a fractional variable x from the linear programming solu-
tion, creating two subproblems in which x was set to 0 and x was set to 1. In general,
any way of creating two or more subproblems that partition the solution space will
do.

Other methods exist to speed up branch-and-bound. The running time of branch-
and-bound depends on the amount of time it takes to compute a bound and the num-
ber of subproblems created. Getting good bounds and having a good incumbent
solution cut down on the number of subproblems, but it is also helpful to speed up
the bound algorithm. One way to do this is to use a bound which can be computed
more quickly than an LP relaxation. In the case of the knapsack problem, we had an
LP bound which could be computed by inspection, but this is not always the case.

32 2. Tools from algorithms and complexity theory

One way to get a bound which can be computed more quickly is to further relax the
linear programming relaxation. We now consider one technique for doing so, called
Lagrangean relaxation.

Lagrangean relaxation. Lagrangean relaxation is a technique that can be used to
speed up the “bound” computation in branch-and-bound. Usually it is applied to
integer or linear programs in which there are some “nice” inequalities and some
“nasty” inequalities, in the sense that if the “nasty” inequalities were not present
we would be able to solve the integer or linear program more easily (perhaps using
a combinatorial algorithm, such as a network flow algorithm). The basic idea of
Lagrangean relaxation is that we drop the nasty constraints from the integer program
or linear program, but add penalties for their violation to the objective function.

For example, suppose we wish to solve the following integer program

Z∗A = Min
n

∑
j=1

c jx j

subject to:

(A)
n

∑
j=1

ai jx j ≥ di i = 1, . . . , p

n

∑
j=1

bi jx j ≥ ei i = 1, . . . ,q

x j ∈ {0,1} j = 1, . . . ,n,

where the integer program is easier to solve without the q constraints ∑
n
j=1 bi jx j ≥ ei.

Then in Lagrangean relaxation, we introduce constants λ1, . . . ,λq ≥ 0 and create the
following integer program

L∗(λ) = Min
n

∑
j=1

c jx j +
q

∑
i=1

λi

(
ei−

n

∑
j=1

bi jx j

)
subject to:

n

∑
j=1

ai jx j ≥ di i = 1, . . . , p

x j ∈ {0,1} j = 1, . . . ,n.

Observe that we can rearrange terms in the objective function in the following way:

L(x,λ) =
n

∑
j=1

c jx j +
q

∑
i=1

λi

(
ei−

n

∑
j=1

bi jx j

)

=
n

∑
j=1

(
c j−

q

∑
i=1

λibi j

)
x j +

q

∑
i=1

λiei.

2.5. Coping with NP-completeness 33

Thus if we define c̃ j = c j −∑
q
i=1 λibi j, the Lagrangean relaxation is of the same

form as the easily solvable integer program, except that it has a constant term in the
objective function:

L∗(λ) = Min
n

∑
j=1

c̃ jx j +
q

∑
i=1

λiei

subject to:
n

∑
j=1

ai jx j ≥ di i = 1, . . . , p

x j ∈ {0,1} j = 1, . . . ,n.

By hypothesis, we can solve this integer program easily. Furthermore, the value of
its solution, L∗(λ), is a lower bound on (A), Z∗A. To see this, note that for any feasible
solution x to (A),

q

∑
i=1

λi

(
ei−

n

∑
j=1

bi jx j

)
≤ 0,

and so L(x,λ)≤∑
n
j=1 c jx j. Since any x feasible for (A) is feasible for the Lagrangean

relaxation and the Lagrangrean relaxation is a minimization problem, L∗(λ)≤ Z∗A.
The technique can be applied to linear programs as well as integer programs;

the discussion above carries through if the constraints x j ∈ {0,1} are replaced with
x j ≥ 0. As a concrete example of how Lagrangean relaxation applies to linear pro-
grams, consider the problem 1|prec|∑ j w jC j. For the problem without precedence
constraints, there is a linear program

Min
n

∑
j=1

w jC j

subject to:
n

∑
j=1

ai jC j ≥ di ∀i

C j ≥ 0 j = 1, . . . ,n,

which gives the optimal solution, where the variable C j gives the completion time
of job j. There is a simple O(n logn) time algorithm to compute the solution (see
Chapter 4 for details of the linear program and algorithm). We can get a better
lower bound on 1|prec|∑ j w jC j by adding constraints Cl−Ck ≥ pk whenever k→ l.
However, adding these constraints to the linear program makes it much harder to

34 2. Tools from algorithms and complexity theory

solve. Applying Lagrangean relaxation gives the linear program

L∗(λ) = Min
n

∑
j=1

w jC j + ∑
k,l:k→l

λkl (pk−Cl +Ck)

subject to:
n

∑
j=1

ai jC j ≥ di ∀i

C j ≥ 0 j = 1, . . . ,n.

Rearranging the objective function yields

L∗(λ) =
n

∑
j=1

(
w j− ∑

k:k→ j
λk j + ∑

l: j→l
λ jl

)
C j + ∑

k,l:k→l
λkl pk

=
n

∑
j=1

w̃ jC j + ∑
k,l:k→l

λkl pk,

where w̃ j = w j−∑k:k→ j λk j +∑l: j→l λ jl . We can then quickly obtain a lower bound
on the cost of optimal solution for the instance of 1|prec|∑ j w jC j by running the
O(n logn) time algorithm on the 1||∑ j w jC j instance with weights w̃ j, and adding
∑k,l:k→l λkl pk to the resulting value.

Of course, in this case and in general, we would like to compute the best bound
possible; that is, we would like to compute the maximum of L∗(λ) over all λ≥ 0. In
some cases, the given problem has enough structure that we are able to find quickly
the λ that maximizes L∗(λ). In general, however, we can use subgradient optimiza-
tion to find a good value of λ. First, we claim that L∗(λ) is a concave function of λ,
so that any local maximum of L∗(λ) is also a global maximum. We could thus use
standard gradient ascent methods to find the global maximum, except that L∗(λ) is
not everywhere differentiable. Instead, we use a generalization of a gradient called a
subgradient. A vector α ∈ Rq is a subgradient of L∗(·) at λ if

L∗(λ′)≤ L∗(λ)+(λ′−λ)T
α

for all λ′ ≥ 0. For a subgradient α, the set {λ′ : (λ′−λ)T α≥ 0} contains any λ′ for
which L∗(λ′)> L∗(λ). Thus the subgradient gives a direction of ascent. Fortunately,
a subgradient is easy to find. Consider the LP (A). Let x∗ be an optimal solution
for λ so that L∗(λ) = L(x∗,λ). Then the vector α with αi = ei −∑

n
j=1 bi jx∗j is a

subgradient. To see this, choose some λ′ ≥ 0 and let x′ be an optimal solution for λ′

2.5. Coping with NP-completeness 35

so that L∗(λ′) = L(x′,λ′). Then it is the case that

L∗(λ′) = L(x′,λ′) ≤ L(x∗,λ′)

=
n

∑
j=1

c jx∗j +
q

∑
i=1

αiλ
′
i

= L∗(x∗,λ)−
q

∑
i=1

αiλi +
q

∑
i=1

αiλ
′
i

= L∗(λ)+(λ′−λ)T
α.

Subgradient optimization generally works by producing a sequence of λi ≥ 0 in
the following way: we start from some λ0, compute L∗(λi), find a subgradient αi,
and then set λi+1 = λi + δiαi ≥ 0, where δi > 0 is a scalar step length. Note that in
this case,

L∗(λi+1)≤ L∗(λi)+δ
i‖αi‖2,

so potentially the value of L∗(λi+1) has increased from L∗(λi). The following theo-
rem states that this sequence λi converges to the optimum under certain conditions.

Theorem 2.28. If δi→ 0 as i→ ∞ and ∑
∞
i=1 δi = ∞, then

L∗(λi)→max
λ≥0

L∗(λ).

The notes at the end of the chapter give references about Lagrangean relaxation and
subgradient optimization.

Acknowledgments

I am very grateful to Eugene Lawler, whose existing outline and drafts of this chapter
proved a solid foundation on which I was able to build in my own fashion. I hope
he would be pleased by the results. I am grateful to the editors, Jan Karel Lenstra
and David Shmoys, for allowing me to participate in this volume. In addition, David
Shmoys gave me many helpful suggestions on how to structure (and restructure) the
chapter. I am also grateful to Greg Sorkin for many useful comments.

Notes

2.1. Algorithmic techniques
Combinatorial optimization. For overviews of the field of combinatorial opti-

mization, consult the books of Bertsimas and Tsitsiklis (1997), Cook, Cunningham,
Pulleyblank, and Schrijver (1998), Lawler (1976), Nemhauser and Wolsey (1988),
and Papadimitriou and Steiglitz (1982).

Linear programming. There are many books on linear programming. A nice
introduction for beginners is the book by Chvátal (1983). Schrijver (1986) gives
a technical, dense, and comprehensive overview of the area, although many of the

36 2. Tools from algorithms and complexity theory

recent developments in interior point methods for solving linear programs are not
included. Wright (1997) gives an accessible treatment of this topic.

Network flows. For further reading on network flows, we recommend the book of
Ahuja, Magnanti, and Orlin (1993). The books above on combinatorial optimization
all include sections on network flows, as do many introductory texts on algorithms
(see Cormen, Leiserson, and Rivest (1990), for example). The first proof of the
maximum flow/minimum cut theorem was given by Ford and Fulkerson (1956). The
proof of Theorem 2.5 given here is due to Bertsimas, Teo, and Vohra (1995). The
algorithm for deciding the feasibility of P|pmtn,r j, d̄ j|− given McNaughton’s rule
is due to Horn (1974).

Dynamic programming. The term “dynamic programming” was coined by Bell-
man (1957). He considers problems in continuous optimization. Other examples
of dynamic programming applied to discrete optimization problems can be found
in standard textbooks in algorithms, such as Cormen, Leiserson, and Rivest (1990).
The knapsack algorithm given in Figure 2.3 is due to Bellman and Dreyfus (1962).
The algorithm in Figure 2.4 is due to Lawler (1979).

2.2. Analysis of algorithms. The first example showing that the simplex method
requires an exponential number of pivots for a certain pivot rule is due to Klee and
Minty (1972); other researchers followed with examples for other pivot rules.

For further information about interior-point methods, consult the books of Wright
(1997) and Ye (1997).

Ahuja, Magnanti, and Orlin (1993) discuss various types of network flow algo-
rithms and their running times. The maximum flow algorithm with running time
O(min(n2/3,m1/2)m log(n2/m) logU) is due to Goldberg and Rao (1998). The more
practical push-relabel algorithm was discovered by Goldberg and Tarjan (1988). Im-
plementations of various maximum flow algorithms are studied in the volume edited
by Johnson and McGeoch (1993). See also Cherkassky and Goldberg (1997) for an
implementation of the push-relabel algorithm. The result showing that the parametric
maximum flow problem can be solved in the same running time as the push-relabel
algorithm is due to Gallo, Grigoriadis, and Tarjan (1989). The successive approxi-
mation push-relabel algorithm for minimum-cost flows is described in Goldberg and
Tarjan (1990) and evaluated in Goldberg (1997). The implementation there is com-
pared to network simplex codes of Grigoriadis (1986) and Kennington and Helgason
(1980).

2.3. Complexity theory and a notion of efficiency. For overviews of the field of
complexity theory, consult the books of Papadimitriou (1994) and Sipser (1997).

2.4. Complexity theory and a notion of hardness. A slightly dated, but still very
worthwhile introduction to the theory of NP-completeness can be found in the book
of Garey and Johnson (1979). Perhaps the most useful feature of the book is an
appendix listing some 300 NP-complete problems. The notion of NP-completeness
and the first NP-complete problems were given independently by Cook (1971) and

2.5. Coping with NP-completeness 37

Levin (1973). However, Karp (1972) was the first to show that many problems from
combinatorial optimization are NP-complete.

Lenstra, Rinnooy Kan, and Brucker (1977) give the proof of the NP-completeness
of 1|r j|Lmax in Theorem 2.19. The proof of the NP-completeness of P||Cmax in Theo-
rem 2.20 is due to Garey and Johnson (1978). The first proof of the NP-completeness
of P|prec, p j = 1|Cmax is due to Ullman (1975). The proof we give in Theorem 2.21
is due to Lenstra and Rinnooy Kan (1978).

2.5. Coping with NP-completeness
Approximation algorithms. Shmoys (1995) gives an excellent survey of this area.

For more in-depth treatments of approximation algorithms, we refer to the collection
of surveys edited by Hochbaum (1997) and the textbooks by Vazirani (2001) and
Williamson and Shmoys (2011).

The polynomial-time approximation scheme we give for the knapsack problem is
due to Ibarra and Kim (1975).

Branch-and-bound. Surveys of Lagrangean relaxation are given by Geoffrion
(1974) and Fisher (1981). The example of applying Lagrangean relaxation to
1|prec|∑ j w jC j is due to Van de Velde (1990). Theorem 2.28 follows from work
of Polyak (1967).

