
Contents

3. Minmax criteria 1
Eugene L. Lawler, Jan Karel Lenstra, David B. Shmoys
3.1. Earliest Due Date and Least Cost Last rules 2
3.2. Preemptive EDD and Least Cost Last rules 5
3.3. A polynomial-time algorithm for jobs of equal length 9
3.4. NP-hardness results 15
3.5. Approximation algorithms 16
3.6. Enumerative methods 22

i

3
Minmax criteria
Eugene L. Lawler
University of California, Berkeley

Jan Karel Lenstra
Centrum Wiskunde & Informatica

David B. Shmoys
Cornell University

Pity poor Bob Cratchit, his in-basket piled high and the holidays upon him. The in-
basket demands the completion of n jobs, each with its own due date. Cratchit has no
idea how long any of the jobs will take. But he knows full well that he must complete
all the jobs on time, else his employment at Scrooge, Ltd. will be terminated. In what
order should he do the jobs?

J. R. Jackson supplied the answer in 1955, too late for Cratchit, but early enough
to qualify as one of the first optimization algorithms in scheduling theory. According
to Jackson’s Earliest Due Date (EDD) rule, if there is any way to complete all of the
jobs on time, then it can be accomplished by performing the jobs in order of nonde-
creasing due dates. Furthermore, such an EDD order minimizes maximum lateness,
whether or not it meets all of the due dates. Thus, Cratchit’s 1||Lmax problem is
solved by simply putting the jobs in EDD order.

The EDD rule, as given by Jackson, is extremely simple. But it has many impli-
cations that are quite nonobvious. With prior modification of due dates, the EDD
rule can be applied to solve 1| prec|Lmax. A preemptive extension of the rule solves
1| pmtn,r j|Lmax and 1| pmtn, prec,r j|Lmax. Furthermore, a generalization of the EDD
rule, the Least Cost Last rule, solves the general problems 1| prec| fmax and
1| pmtn,prec,r j| fmax in O(n2) time.

Given these successes, one might suppose that other problems can be solved effi-

1

2 3. Minmax criteria

ciently by some sort of elaboration of the EDD rule as well. Indeed, a complicated
algorithm that involves an iterative application of the EDD rule solves the case of
equal processing times, 1|r j, p j = p|Lmax, in polynomial time. This is probably as
far as we can get, however: the unrestricted problem 1|r j|Lmax is strongly NP-hard.
In later chapters, we shall have many occasions to reflect on the fact that preemp-
tive scheduling problems are often easier than their nonpreemptive counterparts,
and never known to be harder. In the case of single-machine minmax problems,
nonuniform release dates are innocuous when preemption is permitted, but calama-
tous when it is not.

When faced with an NP-hard problem, there are various things we can do. First,
we can try to find interesting and useful special cases that are solvable in polynomial
time, such as the ones mentioned above. Second, we can devise approximation al-
gorithms with performance guarantees, as we will do for the related ‘head-body-tail
problem’. Third, we can avail ourselves of enumerative methods.

3.1. Earliest Due Date and Least Cost Last rules

The Earliest Due Date (EDD) rule schedules the jobs without idle time in order of
nondecreasing due dates; ties are broken arbitrarily. The resulting schedule rule is
called an EDD schedule.

Theorem 3.1 [Jackson’s EDD rule]. Any EDD schedule is optimal for the problem
1||Lmax.

Proof. Let π be the ordering of the jobs in an EDD schedule, i.e., job π(j) is the
jth job scheduled, and let π∗ be an optimal ordering. Suppose that π 6= π∗. Then
there exist jobs j and k such that job k immediately precedes job j in π∗, but job j
precedes job k in π, with d j ≤ dk. Interchanging the positions of jobs k and j in π∗

does not increase Lmax, and decreases the number of pairs of consecutive jobs in π∗

that are in the opposite order in π. It follows that a finite number of such interchanges
transforms π∗ into π, so that π is optimal.

Corollary 3.2. For any instance of 1||Lmax, all due dates can be met if and only if
they are met in any EDD schedule.

An EDD schedule can be found by sorting the due dates, which requires O(logn)
time. Sometimes O(n) time suffices, as in the special case of equal processing times
(see Exercises 3.3 and 3.4).

It is perhaps surprising that the EDD rule also solves the problem 1| prec|Lmax,
provided that the due dates are first modified to reflect the precedence constraints.
Similar modifications schemes will be encountered in Chapter 11 as well, but they
will not be as simple as this one.

If d j < dk whenever j→ k, then any EDD schedule is consistent with the given
precedence constraints and thereby optimal for 1| prec|Lmax. Observe that, if j→ k,

3.1. Earliest Due Date and Least Cost Last rules 3

we may set

d j := min{d j,dk− pk} (3.1)

without increasing the value of Lmax in any feasible schedule, since

Lk =Ck−dk ≥C j + pk−dk =C j− (dk− pk).

Let G = ({1, . . . ,n},A) be an acyclic digraph that represents the precedence rela-
tion. Consider updating the due dates in the following systematic manner: in each
iteration, select a vertex k ∈V of outdegree 0 (that is, a sink) and, for each arc (j,k),
update d j using (3.1); when all such arcs have been processed, delete them and vertex
k from G.

We claim that, after executing this algorithm, d j < dk whenever (j,k) ∈ A. At
some stage, vertex k becomes a sink and is subsequently selected in a particular
iteration. Immediately after that iteration, the update (3.1) implies that d j < dk; since
dk remains unchanged from this point on and d j can only decrease, our claim is valid.
Hence, by blindly applying the EDD rule to the modified due dates, we automatically
obtain a feasible schedule, which must therefore be optimal.

The due date modification algorithm takes O(n+ |A|) time. Since the EDD rule
takes O(n logn) time, we can solve 1| prec|Lmax in O(n logn+ |A|) time. Moreover,
the problem can be solved without any knowledge of the processing times of the jobs
(see Exercise 3.5).

There is an important symmetry between the problems 1||Lmax and 1|r j|Cmax.
The former problem can be viewed as minimizing the amount by which the due
dates must be uniformly increased so that there exists a schedule in which each job
meets its (modified) due date. For the latter problem, we may also restrict attention
to schedules in which the jobs are processed without idle time between them, since
in each feasible schedule of length Cmax the start of processing can be delayed until
Cmax−∑ j p j. The problem can then be viewed as minimizing the amount by which
the release dates must be uniformly decreased so that there exists a schedule of length
∑ j p j in which no job starts before its (modified) release date. These two problems
are mirror images of each other; one problem can be transformed into the other by
letting time run in reverse.

More precisely, an instance of 1|r j|Cmax can be transformed into an instance of
1||Lmax by defining due dates d j = K− r j for some integer K. (One may choose
K ≥ max j r j in order to obtain nonnegative due dates.) An optimal schedule for the
former problem is found by reversing the job order in an optimal schedule for the
latter. If we wish to solve 1| prec,r j|Cmax, then we must also reverse the precedence
constraints, i.e., make j→ k in the Lmax problem if and only if k→ j in the Cmax
problem. It follows that the algorithm for 1| prec|Lmax also solves 1| prec,r j|Cmax,
in O(n logn+ |A|) time. In Section 3.5 we will make the symmetry between release
dates and due dates more explicit by introducing the ‘head-body-tail’ formulation of
1|r j|Lmax.

While 1| prec|Lmax can be solved without knowledge of the processing times, this
is definitely not true for the more general problem 1| prec| fmax. Nevertheless, the

4 3. Minmax criteria

latter problem can be solved in O(n2) time, by a generalization of the EDD rule that
we shall call the Least Cost Last rule.

Let N = {1,2, . . . ,n} be the set of jobs, and let L ⊆ N be the set of jobs without
successors. For any subset S ⊆ N, let p(S) = ∑ j∈S p j, and let f ∗max(S) denote the
cost of an optimal schedule for the subset of jobs indexed by S. We may assume that
the machine completes processing by time p(N). Since one of the jobs in L must be
scheduled last, we have

f ∗max(N)≥min j∈L f j(p(N)).

Since omitting one of the jobs cannot increase the optimal cost, we also have

f ∗max(N)≥ f ∗max(N−{ j}) for all j ∈ N.

Now let job l with l ∈ L be such that

fl(p(N)) = min j∈L f j(p(N)).

We have

f ∗max(N)≥max{ fl(p(N)), f ∗max(N−{l})}.

But the right-hand side of this inequality is precisely the cost of an optimal schedule
subject to the condition that job l is processed last. It follows that there exists an
optimal schedule in which job l is in the last position. Since job l is found in O(n)
time, repeated application of this Least Cost Last rule yields an optimal schedule in
O(n2) time.

Theorem 3.3. The Least Cost Last rule solves the problem 1| prec| fmax in O(n2)
time. 2

Theorem 3.3 can also be proved by a straightforward interchange argument, but the
method used here will be applied to the problem 1| pmtn, prec,r j| fmax in Section 3.2.

Exercises
3.1. Define the earliness of job j as E j = d j −C j. Use an interchange argument
similar to the one in the proof of Theorem 3.1 to show that the maximum earliness
Emax is minimized by scheduling the jobs j in order of nonincreasing p j−d j.
3.2. Prove Corollary 3.2
3.3. Show that 1| p j ≤ p|Lmax can be solved in O(np) time by appropriate sorting
techniques.
3.4. Show that 1| p j = p|Lmax can be solved in O(n) time. (Hint: Find dmin =min jd j.
For each interval [dmin+(k−1)p,dmin+kp) (k = 1, . . . ,n), count the number of jobs
with due dates in the interval and record the largest due date in the interval. Use these
values to compute the maximum lateness of an EDD schedule. Then find a schedule
that meets this bound.)

3.2. Preemptive EDD and Least Cost Last rules 5

3.5. Show that 1| prec|Lmax can be solved without any knowledge of the p j val-
ues. Devise a two-job example to show that this is not the case for the maxi-
mum weighted lateness problem 1||wLmax, where each job j has a weight w j and
wLmax = max jw jL j.
3.6. Prove Theorem 3.3 using an interchange argument.
3.7. Suppose that processing times are allowed to be negative. (This may seem less
unnatural if one views p j as the amount of a resource that is either consumed, if
p j > 0, or produced, if p j < 0.) Processing begins at time 0, and each completion
time C j is the total processing time of the jobs scheduled up to (and including) job
j. Extend the Least Cost Last rule to solve this generalization of 1|| fmax in O(n2)
time. (Hint: It is possible to partition an instance of the generalized problem into
two instances of the ordinary kind.)
3.8. Prove that the precedence-constrained version of the problem posed in Exercise
3.7 is NP-hard.

3.2. Preemptive EDD and Least Cost Last rules

We wish to extend the EDD rule to deal with nonuniform release dates. In this section
we will consider such an extension for the case in which preemption is permitted. A
nonpreemptive extension of the EDD rule is introduced in the next section.

The preemptive EDD rule solves the problem 1| pmtn,r j|Lmax by scheduling the
jobs in time, with a decision point at each release date and at each job completion
time. A job j is said to be available at time t if r j ≤ t and it has not yet completed
processing. At each decision point, from among all available jobs, choose to process
a job with the earliest due date. If no jobs are available at a decision point, schedule
idle time until the next release date.

Observe that the preemptive EDD rule creates preemptions only at release dates,
but not at the first one. That is, if there are k distinct release dates, the rule introduces
at most k− 1 preemptions. If all release dates are equal, then there are no preemp-
tions and the rule generates an ordinary EDD schedule, as described in the previous
section.

We shall prove that the preemptive EDD rule produces an optimal schedule. For
S⊆ N, let r(S) = min j∈Sr j, p(S) = ∑ j∈S p j, and d(S) = max j∈Sd j.

Lemma 3.4. For any instance of 1| pmtn,r j|Lmax or 1|r j|Lmax, L∗max ≥ r(S)+ p(S)−
d(S) for each S⊆ N.

Proof. Consider an optimal schedule, and let job j be the last job in S to finish.
Since none of the jobs in S can start processing earlier than r(S), C j ≥ r(S)+ p(S).
Furthermore, d j ≤ d(S), and so L∗max ≥ L j =C j−d j ≥ r(S)+ p(S)−d(S). 2

Theorem 3.5. The preemptive EDD rule solves the problem 1| pmtn,r j|Lmax, with
L∗max = maxS⊆Nr(S)+ p(S)−d(S).

6 3. Minmax criteria

Figure 3.1. Schedule obtained by the preemptive EDD rule.

Proof. We will show that the preemptive EDD rule produces a schedule that meets
the lower bound of Lemma 3.4 for an appropriately chosen set S.

Consider the schedule produced by the preemptive EDD rule (cf. Figure 3.1). Let
job c be a critical job, that is, Lc = Lmax. Let t be the latest time such that each job j
processed in the interval [t,Cc] has r j ≥ t, and let S be the subset of jobs processed in
this interval. The interval contains no idle time: if there were an idle period, then its
end satisfies the criterion used to choose t and is later than t; hence, p(S) ≥Cc− t.
Further, r j ≥ t for each j ∈ S and, since the machine is never idle in [t,Cc], some job
starts at time t; hence, r(S) = t. Finally, we show that d(S) = dc. Suppose that this
is not true, and let t ′ denote the latest time within [t,Cc] at which some job j with
d j > dc is processed. Hence, each job k processed in [t ′,Cc] has dk ≤ dc < d j; since
the preemptive EDD rule did not preempt job j to start job k, we have rk ≥ t ′. But
this implies that t ′ should have been selected instead of t, which is a contradiction.
Therefore, Lmax = Lc =Cc−dc ≤ r(S)+ p(S)−d(S), which proves the theorem. 2

The preemptive EDD rule is easily implemented to run in O(n logn) time with the
use of two priority queues. Jobs are extracted from one queue in order of nondecreas-
ing release dates. The second queue contains the jobs that are currently available.
The available job with smallest due date is extracted from this queue, and reinserted
upon preemption.

It is particularly important to note that the preemptive EDD rule is on-line, in
the sense that it only considers available jobs for the next position in the schedule,
without requiring any knowledge of their processing times and of the release dates
of future jobs. This makes it an ideal rule for scheduling tasks with due dates on a
real-time computer system.

After appropriate modification of both release dates and due dates, the preemptive
EDD rule also solves the problem 1| pmtn, prec,r j|Lmax. The condition that must be
satisfied is that r j < rk and d j < dk whenever j→ k. In Section 3.1 we have already
given a procedure for modifying the due dates. For the release dates, observe that, if
j→ k, we may set

rk := max{rk,r j + p j}

without changing the set of feasible schedules. We leave it to the reader to verify that
1| pmtn, prec,r j|Lmax can be solved in O(n logn+ |A|) time, where A is the arc set of

3.2. Preemptive EDD and Least Cost Last rules 7

the precedence digraph.
In some cases, the preemptive EDD rule produces a schedule without preemp-

tions, which is therefore optimal for the nonpreemptive variant as well. This observa-
tion applies to the cases of equal release dates (1||Lmax), equal due dates (1|r j|Cmax),
and unit processing times (1|r j, p j = 1|Lmax); in the last case, our assumption that all
release dates are integral is essential. The preemptive EDD rule also solves a com-
mon generalization of the cases of equal release dates and equal due dates, which
occurs when d j ≤ dk whenever r j < rk; such release and due dates are said to be
similarly ordered (see Exercise 3.9).

The preemptive EDD rule produces an optimal schedule with no unforced idle
time; idle time is unforced if there is an available job. A significant consequence of
this observation is the following.

Theorem 3.6. For any instance of 1| pmtn, prec,r j| fmax and 1| pmtn, prec,r j|∑ f j,
there exists an optimal schedule with no unforced idle time and with at most n− 1
preemptions.

Proof. Given an optimal schedule in which each job j has a completion time C∗j ,
create an instance of 1| pmtn, prec,r j|Lmax by setting d j =C∗j . These due dates sat-
isfy the property that d j < dk whenever j→ k. Modify the release dates so that they
also conform to the precedence constraints, and apply the preemptive EDD rule. In
the resulting schedule, each job j completes no later than C∗j . Hence, the new sched-
ule is also optimal and the theorem is proved. 2

We shall now obtain a preemptive extension of the Least Cost Last rule that will
enable us to solve 1| pmtn,r j| fmax and even 1| pmtn, prec,r j| fmax in O(n2) time.

Taking our cue from Theorem 3.6 which states that there is an optimal schedule
with no unforced idle time, we first notice that we must work with a certain block
structure. Consider running the following algorithm on an instance of 1| pmtn,r j| fmax:
as long as jobs are available, choose one of them and schedule it to completion; other-
wise, find the minimum release date of an unscheduled job, create an idle period until
then, and continue from there. This algorithm partitions N into blocks, where a block
consists of a maximal subset of jobs processed continuously without idle time. Call
this algorithm Find Blocks(N). Recall that, for any subset S ⊆ N, r(S) = min j∈Sr j
and p(S) = ∑ j∈S p j, and define t(S) = r(S)+ p(S). It follows that, if we find the
blocks B1, . . . ,Bk in that order, then Bi starts processing at time r(Bi) and completes
processing at time t(Bi)< r(Bi+1). Using this information, we obtain the following
corollary of Theorem 3.6.

Corollary 3.7. If B1, . . . ,Bk are the blocks of an instance of 1| pmtn,r j| fmax, then
there exists an optimal schedule in which the jobs of Bi (i = 1, . . . ,k) are scheduled
from r(Bi) to t(Bi) without idle time. 2

Corollary 3.7 implies that we can find an optimal schedule for each block, and then
combine them to obtain an optimal schedule for the entire instance. Furthermore, the
algorithm to solve 1| pmtn,r j| fmax for a block can now follow a plan nearly identical

8 3. Minmax criteria

to the one used for 1|| fmax. Let f ∗max(B) denote the cost of an optimal schedule for the
subset of jobs indexed by B. As above, we may assume that the machine completes
processing block B at time t(B). Since some job in B must finish last, we have

f ∗max(B)≥min j∈B f j(t(B)).

Again, it is clear that

f ∗max(B)≥ f ∗max(B−{ j}) for all j ∈ B.

Now choose job l with l ∈ B such that

fl(t(B)) = min j∈B f j(t(B)).

We have

f ∗max(B)≥max{ fl(t(B)), f ∗max(B−{l})}. (3.2)

We will give a recursive algorithm that produces a schedule whose value fmax(B)
meets this lower bound.

Algorithm Schedule Block(B)
if B = /0 then return the empty schedule;
l := argmin j∈B f j(t(B));
call Find Blocks(B−{l});
schedule job l in the idle time generated between r(B) and t(B);
for each block Bi found call Schedule Block(Bi).

Note that, in the resulting schedule, job l is processed only if no other job is available.
We shall prove by induction on the number of jobs in |B| that Schedule Block

constructs an optimal schedule. Clearly, this is true if |B|= 0. Otherwise, consider a
critical job, i.e., one whose completion cost equals fmax(B). If job l is critical, then

fmax(B) ≤ fl(t(B)),

since job l is certainly completed by t(B). If one of the other jobs in B is critical,
then the correctness of the algorithm for smaller blocks, along with Corollary 3.7,
implies that

fmax(B) ≤ f ∗max(B−{l}).

It follows that the algorithm produces a schedule whose value matches the lower
bound (3.2) on the optimal value. Hence, the schedule is optimal.

To analyze the running time of this algorithm, we must be a bit more careful
about a few implementation details. Let T (n) be the worst-case running time of
Schedule Block on an input with n jobs. We start by reindexing the jobs so that
they are ordered by nondecreasing release dates. It then takes linear time to identify
job l, and also linear time to run Find Blocks, since the jobs are nicely ordered. In
order to call Schedule Block recursively on each block found, we must make sure

3.3. A polynomial-time algorithm for jobs of equal length 9

that the jobs in each block are numbered appropriately. However, we can separate
the original sorted list of n jobs into sorted lists for each block in linear time. Thus,
if n1, . . . ,nk are the sizes of the blocks found, then

T (n) ≤ T (n1)+ · · ·+T (nk)+O(n),

where n1 + · · ·+nk = n−1, and T (1) = O(1). This implies that T (n) = O(n2), as is
easily verified by induction.

It is also important to analyze the number of preemptions generated by this algo-
rithm. In the schedule constructed, job l can be preempted only at times r(B′) for the
blocks B′ of B−{l}. This implies that the schedule contains at most n−1 preemp-
tions, and it is not hard to construct instances for which every optimal schedule has
that many preemptions (see Exercise 3.10).

Theorem 3.8. The problem 1| pmtn,r j| fmax can be solved in O(n2) time in such a
way that the optimal schedule has at most n−1 preemptions.

Exercises
3.9. Show that the preemptive EDD rule solves 1|r j|Lmax in O(n log n) time in case
the release and due dates are similarly ordered, i.e., d j ≤ dk whenever r j < rk.
3.10. Give a class of instances of 1| pmtn,r j| fmax for which every optimal schedule
has n−1 preemptions.
3.11. Show how to extend Theorem 3.8 to apply to 1| pmtn, prec,r j| fmax. (Hint: Af-
ter modifying the release dates in the usual way, the main difficulty is in identifying
the correct job l, which is now restricted to be a job that has no successors within its
block.)
3.12. Apply the algorithm of Theorem 3.8 to find an optimal schedule for the in-
stance of 1| pmtn, prec,r j| fmax given in Figure 3.2.
3.13. Show that the preemptive Least Cost Last rule solves 1| prec,r j, p j = 1| fmax
in O(n2) time.
3.14. Devise and prove a minmax theorem that generalizes Theorem 3.5 to
1| pmtn,r j| fmax.

3.3. A polynomial-time algorithm for jobs of equal length

We have seen that the preemptive EDD rule solves 1|r j|Lmax in O(n log n) time when
all r j are equal, when all d j are equal, when all p j = 1, and even when the r j and
d j are similarly ordered. It is not easy to find additional special cases for which the
preemptive EDD rule creates no preemptions.

We can modify the preemptive rule so that it is forced to produce a nonpreemptive
schedule. With luck, some new special cases can be solved by the nonpreemptive
EDD rule: schedule the jobs in time, with a decision point at the beginning of each
block and at each job completion time. At each decision point, choose to process an

10 3. Minmax criteria

Figure 3.2. Five-job instance of 1| pmtn, prec,r j| fmax for Exercise 3.12.

3.3. A polynomial-time algorithm for jobs of equal length 11

Figure 3.3. Schedule obtained by the nonpreemptive EDD rule.

available job with the earliest due date. If no jobs are available at a decision point,
schedule idle time until the next release date.

Unfortunately, it is also not easy to find new cases for which the direct applica-
tion of the nonpreemptive EDD rule can be guaranteed to yield an optimal schedule.
However, the rule is invaluable as a component of more elaborate algorithms, for
solving special cases, for obtaining near-optimal solutions, and for computing op-
timal schedules by enumeration. In this section, we shall develop an algorithm for
the special case of equal processing times, 1|r j, p j = p|Lmax. This algorithm, unlike
the simple EDD rule, is off-line, and unlike the special cases we have seen thus far,
1|r j, p j = p|Lmax is not solvable by an on-line algorithm (see Exercise 3.15).

The reader should observe that the case in which all p j are equal to an arbitrary
positive integer p is very different from the case in which all p j = 1. It is possible
to rescale time so that p = 1. But then the release dates become rational numbers,
contrary to the ground rule under which we asserted that the preemptive EDD rule
solves 1|r j, p j = 1|Lmax.

There are instances of the general 1|r j|Lmax problem for which the solution de-
livered by the nonpreemptive EDD rule can be proved to be optimal. Recall that, for
S⊆ N, r(S) = min j∈Sr j, p(S) = ∑ j∈S p j, and d(S) = max j∈Sd j. Consider a schedule
delivered by the nonpreemptive EDD rule (cf. Figure 3.3). Let job c be a critical
job, that is, Lc = max jL j, and let t be the earliest time such that the machine is not
idle in the interval [t,Cc]. The sequence of jobs Q processed in this interval is called
a critical sequence. None of the jobs in Q has a release date smaller than t; that
is, r(Q) = t. Suppose that, in addition, none of the jobs in Q has a due date larger
than dc; that is, d(Q) = dc. In that case, the schedule must be optimal: its maximum
lateness is equal to r(Q)+ p(Q)−d(Q), which, by Lemma 3.4, is a lower bound on
the optimum.

This proof of optimality, however, is a happy turn of events, and many instances
will not have the property that d(Q) = dc. For those instances, there will be a job b
with b ∈ Q and db > dc. Any such job interferes with the optimality proof, and the
one scheduled last in Q is called an interference job. This notion will be useful in
several aspects of algorithm design for 1|r j|Lmax. We shall now apply it to derive a
polynomial-time algorithm for 1|r j, p j = p|Lmax.

We will first consider the decision version of this problem and give a polynomial-

12 3. Minmax criteria

time algorithm to decide whether, for a given integer l, there exists a schedule with
value Lmax ≤ l. This is equivalent to the problem of deciding if every job can meet
its due date, since a schedule satisfies Lmax ≤ l if and only it satisfies Lmax ≤ 0 with
respect to modified due dates d j + l (j = 1, . . . ,n). Thus, we view the due dates as
deadlines and call a schedule in which every job is on time a feasible schedule.

Suppose that the nonpreemptive EDD rule constructs an infeasible schedule. Find
a critical job c and its critical sequence Q. If there is no interference job in Q,
then Lemma 3.4 implies that no feasible schedule exists. Suppose that there is an
interference job b, and let Sb be its starting time. Focus on that part of Q that follows
job b; call this part Q′. The definition of an interference job implies that d(Q′) =
dc < db. In spite of this, the nonpreemptive EDD rule selected job b for processing at
time Sb. It follows that r(Q′)> Sb. Consider any schedule in which a job starts in the
interval [Sb,r(Q′)). Clearly, this cannot be a job in Q′. Since all processing times are
equal, the jobs in Q′ are delayed at least as much as in the schedule produced by the
nonpreemptive EDD rule. Hence, some job in Q′ must be late, and the schedule is
infeasible. We conclude that no feasible schedule has any job starting in [Sb,r(Q′)),
and therefore call that interval a forbidden region.

The main idea of the algorithm is to repeat this approach. We apply the nonpre-
emptive EDD rule, never starting jobs in any forbidden region that has been identified
before. There are three possible outcomes: either a feasible schedule is found, or the
instance is proved infeasible, or a new forbidden region is identified. In the first two
cases, we are done; in the last case, we repeat. The running time analysis will rely
on the fact that the number of forbidden regions is limited.

Before stating the algorithm in detail, we have to modify our definition of a crit-
ical sequence, since idle time that is caused by a forbidden region does not count.
Given a critical job c, its critical sequence Q consists of the jobs processed during
the maximal interval [t,Cc) such that all idle time within the interval occurs within
forbidden regions. The decision algorithm is now as follows.

F := /0; * initialize the set of forbidden regions *
until a feasible schedule is found * produce the next schedule *

N := {1, . . . ,n}; * N is the set of unscheduled jobs *
t := 0; * t is the time at which the next job may start *
while N 6= /0 * some job is not yet scheduled *

while there exists F ∈ F such that t ∈ F = [t1, t2)
t := t2; * advance t beyond forbidden regions *

A := { j ∈ N|r j ≤ t}; * A is the set of available jobs at t *
select j ∈ A for which d j is minimum; * choose next job *
S j := t; C j := t + p; * schedule job j *
N := N−{ j}; * mark job j as scheduled *
t := t + p; * advance t to C j *

if some job is late
then * prove infeasibility or find new forbidden region *

find a critical job c;

3.3. A polynomial-time algorithm for jobs of equal length 13

if there is no interference job then output ‘infeasible’ and halt;
b := the interference job in the critical sequence ending with c;
Q′ := { j|Sb < S j ≤ Sc};
F := F ∪{[Sb,r(Q′))}.

The reader may wonder why this algorithm must stop. Observe that the upper
endpoint of a forbidden region is always a release date. Hence, each job has a starting
time of the form r j + sp, where s is an integer between 0 and n− 1. Since the
lower endpoints of the forbidden regions are starting times, there are O(n2) possible
lower endpoints, and after that many iterations we cannot possibly generate a new
forbidden region. The algorithm must terminate within O(n2) iterations.

In order to prove that the algorithm is correct, we need a lemma. Suppose that the
jobs have identical release dates and identical processing times, and that we just wish
to minimize schedule length; however, no job is allowed to start in any of a number
of given forbidden regions. This problem can be solved in a simple way.

Lemma 3.9 [Simple algorithm]. Given a set F of forbidden regions, the problem
1|r j = r, p j = p|Cmax is solved by repeatedly choosing a job and starting it at the
earliest possible time that is not contained in any interval in F .

Proof. Suppose that the lemma is incorrect. Choose a counterexample with the
smallest number of jobs. Since the jobs are identical, we may assume that they
are ordered 1, . . . ,n in both the schedule produced by the simple algorithm and the
optimal schedule. Let C j and C∗j , respectively, denote the completion time of job
j in each of these schedules. By the choice of counterexample, C j ≤ C∗j for j =
1, . . . ,n−1. In particular, since Cn−1 ≤C∗n−1, any time at which the optimal schedule
may start job n is also available for the simple algorithm. Hence, Cn ≤C∗n , which is
a contradiction. 2

We claim that the decision algorithm has the following invariant property: for any
feasible schedule, no job starts at a time contained in a forbidden region F ∈ F . We
shall first use this property to show that the algorithm is correct, and then establish
its validity.

Assuming that the invariant property holds, it will be sufficient for us to show that
no feasible schedule exists whenever the algorithm concludes that this is so. Sup-
pose the algorithm halts without having produced a feasible schedule. In that case,
the final schedule found has a critical sequence Q with no interference job. By defi-
nition, the jobs in Q are the only ones scheduled between r(Q) and their maximum
completion time, max j∈QC j > d(Q). We shall invoke Lemma 3.9 to show that this
set of jobs cannot be completed earlier than in the schedule found. Observe that the
schedule of the critical sequence contains no idle time outside of the forbidden re-
gions. Hence, this schedule could have been produced by the simple algorithm on a
modified instance in which each release date is set equal to r(Q). By Lemma 3.9, the
maximum completion time of this schedule is optimal. However, it exceeds d(Q). It
follows that, in any schedule, the job in Q that finishes last must be late.

We still must verify the invariant property. It certainly holds initially, when there

14 3. Minmax criteria

are no forbidden regions, and we have already seen that it holds when the first for-
bidden region has been found. Assume that the invariant property holds for the first
k forbidden regions found. Suppose that, in iteration k+ 1, an infeasible schedule
is found, with a corresponding forbidden region [Sb,r(Q′)). Extract the schedule
for the jobs in Q′ ∪{b}. There is no idle time outside of a forbidden region in this
schedule from Sb until all jobs in Q′∪{b} are completed. Thus, if the release dates
of these jobs were to be modified to Sb, then this schedule is a possible output of the
simple algorithm. Its completion time exceeds d(Q′) and, by Lemma 3.9, no earlier
maximum completion time is possible for this subinstance.

Suppose that there exists a feasible schedule with S j ∈ [Sb,r(Q′)) for some job j.
Of course, j 6∈ Q′. From this feasible schedule, extract the schedule for the jobs in
Q′∪{ j}. By the invariant property, no job starts during any of the k forbidden regions
already identified. The schedule remains feasible if we change each release date to
Sb. This makes job j identical to job b. But it now follows that the completion time
of the schedule must exceed d(Q′), which contradicts its feasibility. This completes
the correctness proof of the algorithm.

As for the running time of the algorithm, we already know that there are O(n2)
iterations. We still must figure out how to implement each iteration. The jobs are
initially stored in a priority queue, ordered by their release dates. Whenever the
available set A is updated, we repeatedly test whether the minimum element in the
queue is no more than the current time parameter t and, if so, extract the minimum
element from the queue. The available set is stored in another priority queue, ordered
by due date. With these data structures, each iteration takes O(n log n) time. Hence,
the decision algorithm runs in O(n3 log n) time.

We now have solved the decision problem. In order to solve the optimization
problem, we can use a naive bisection search to find L∗max but there is a better way.
Observe that any lateness is the difference between a starting time and a due date.
Since there are only O(n2) possible starting times and O(n) due dates, there are
O(n3) possible values of Lmax. Even using brute force, we can calculate all of these,
sort them, and then do a bisection search to find L∗max. As a result, O(log n) iterations
suffice to find the optimal solution.

Theorem 3.10. The problem 1|r j, p j = p|Lmax can be solved in O(n3 log2 n) time by
an iterated version of the nonpreemptive EDD rule.

We should make a final comment about implementing this algorithm. While we
have stipulated that each forbidden region is derived from a critical job, the proof
uses nothing more than that the job is late. Hence, whenever the algorithm schedules
a job, it should check if that job is late. If it is, the current iteration ends, either by
identifying an interference job relative to that job, or by concluding that the instance
is infeasible.

The algorithm is easily extended to solve 1| prec,r j, p j = p|Lmax as well. As
we have indicated in the previous sections, the release and due dates of a problem
instance can be modified in such a way that r j < rk and d j < dk whenever j →
k, without changing the set of feasible schedules and their objective values. The

3.4. NP-hardness results 15

Figure 3.4. Instance of 1|r j, p j = p, d̄ j|− for Exercise 3.16.

nonpreemptive EDD rule, when run on the modified instance, will automatically
respect the precedence constraints. Hence, any schedule generated by the algorithm
will satisfy the precedence constraints.

Exercises
3.15. Show that there is no on-line algorithm to solve 1|r j, p j = p|Lmax.
3.16. Apply the algorithm of Theorem 3.10 to find a feasible schedule for the in-
stance of 1|r j, p j = p, d̄ j|− given in Figure 3.4. What happens if d̄6 is changed to
18?
3.17. Consider the special case of 1|r j|Lmax in which r j + p j ≥ rk for each pair (j,k).
(a) Show that there exists an optimal schedule in which at least n−1 of the jobs are
in EDD order.
(b) Describe how to find an optimal schedule in O(n2) time.
(c) Describe how to find an optimal schedule in O(n log n) time.
(d) Suppose that, instead of r j + p j ≥ rk, we have d j− p j ≤ dk for each pair (j,k).
What can be said about this special case?

3.4. NP-hardness results

We will now show that one cannot expect to obtain a polynomial-time algorithm for
1|r j|Lmax in its full generality. More precisely, 1|r j|Lmax is strongly NP-hard.

Theorem 3.11. 1|r j|Lmax is NP-hard in the strong sense.

Proof. We shall show that the problem is NP-hard in the ordinary sense, by proving
that the partition problem reduces to the decision version of 1|r j|Lmax. To establish
strong NP-hardness, one can give an analogous reduction from 3-partition, but this
is left to the reader (see Exercise 3.18).

An instance of partition consists of integers a1, . . . ,at ,b with ∑
t
j=1 a j = 2b. The

16 3. Minmax criteria

Figure 3.5. The reduction of partition to 1|r j|Lmax.

corresponding instance of 1|r j|Lmax has n = t +1 jobs, defined by

r j = 0, p j = a j, d j = 2b+1, j = 1, . . . , t;

rn = b, pn = 1, dn = b+1.

We claim that there exists a schedule of value Lmax ≤ 0 if and only if the instance of
partition is a yes-instance.

Suppose we have a yes-instance of partition; that is, there exists a subset S ⊂
{1, . . . , t} with ∑ j∈S a j = b. We then schedule the jobs j with j ∈ S in the interval
[0,b], job n in [b,b+ 1], and the remaining jobs in [b+ 1,2b+ 1] (cf. Figure 3.5).
Note that no job starts before its release date, and that no job is late.

Conversely, consider a feasible schedule of value Lmax ≤ 0. In such a schedule,
job n must start at time b and there cannot be any idle time. Hence, the jobs that
precede job n have a total processing time of b. Since p j = a j (j = 1, . . . ,n), we
conclude that we have a yes-instance of partition. 2

Exercises
3.18. Prove that 1|r j|Lmax is NP-hard in the strong sense.
3.19. Show that 1||max{Emax,Lmax} is strongly NP-hard (cf. Exercise 3.1).

3.5. Approximation algorithms

Since 1|r j|Lmax is NP-hard, it is natural to ask whether there are polynomial-time
algorithms that find solutions guaranteed to be close to the optimum. Before answer-
ing this question, we must make sure that it is well posed. As discussed in Chapter
3, we are primarily concerned with the performance of an approximation algorithm
in terms of its worst-case relative error. We would like to give an algorithm A such
that, for example, Lmax(A) ≤ 2L∗max for every instance. This is a reasonable goal
when L∗max is positive. However, when L∗max = 0, we must find the optimum, and
when L∗max < 0, we must find a solution that is better than optimal!

This difficulty is not avoided if we switch to the Tmax objective. The maximum tar-
diness of a schedule is always nonnegative, but it can be zero. This has the interesting
consequence that, for the problem 1|r j|Tmax, we cannot hope to find a polynomial-
time algorithm with any finite performance bound.

3.5. Approximation algorithms 17

Theorem 3.12. If there exist a polynomial-time algorithm A and a constant c > 1
such that, for any instance of 1|r j|Tmax, Tmax(A)< cT ∗max, then P = NP. 2

The proof follows directly from the reduction given in the proof of Theorem 3.11
(see Exercise 3.20).

For Lmax problems, however, the whole notion of a c-approximation algorithm
makes no sense. We can get around this difficulty by realizing that, unlike release
dates and processing times, due dates have never been assumed to be nonnegative.
By requiring that all due dates are negative, we ensure that each lateness is posi-
tive. And there do exist good approximation algorithms and, in fact, a polynomial
approximation scheme for the problem 1| prec,r j,d j < 0|Lmax.

A few words about the significance of this problem are in order. Any instance of
1| prec,r j|Lmax can be transformed into an instance with negative due dates by sub-
tracting a constant K from each d j, where K >max jd j. Both instances are equivalent
to the extent that a schedule is optimal for one if and only if it is optimal for the other.
Still, a good approximation for the transformed instance may be a very poor approx-
imation for the original, since the transformation adds K to the maximum lateness of
each schedule.

However, the problem 1| prec,r j,d j < 0|Lmax is not something we concocted for
the sole purpose of being able to obtain good performance guarantees for approxima-
tion algorithms. The problem is equivalent to the head-body-tail problem, in which
each job j is to be processed on the machine during a period of length p j, which
must be preceded by a release time of length r j and followed by a delivery time of
length q j. A job j can only start at time S j ≥ r j; it then finishes at time C j = S j + p j
and is delivered at time L j = C j + q j. If j → k, then it is required, as usual, that
C j ≤ Sk. The objective is to minimize the maximum job delivery time. Obviously,
the two problems correspond to each other via d j =−q j. A schedule is feasible for
one problem if and only if it feasible for the other, and it has the same criterion values
in both formulations.

We shall encounter the head-body-tail problem in Chapters 12 and 13, where it
arises quite naturally as a relaxation of flow shop and job shop scheduling problems.
In that context, it is convenient to view it as a three-machine problem, with each job
j having to be processed by machines 1, 2, 3 in that order, for r j, p j, q j time units,
respectively. Contrary to our usual assumptions, machines 1 and 3 are non-bottleneck
machines, in that they can process any number of jobs simultaneously; machine 2
can handle at most one job at a time and corresponds to the original single machine.
Precedence constraints have to be respected on machine 2 only. The objective is to
minimize the maximum job completion time on machine 3.

An appealing property of the head-body-tail problem is its symmetry. An instance
defined by n triples (r j, p j,q j) and a precedence relation→ is equivalent to an inverse
instance defined by n triples (q j, p j,r j) and a precedence relation→′, where j→′ k
if and only if k → j. A feasible schedule for one problem instance is converted
into a feasible schedule for its inverse by reversing the order in which the jobs are
processed. The equivalence of 1| prec|Lmax and 1| prec,r j|Cmax is a manifestation of

18 3. Minmax criteria

this symmetry.
We shall use the language and notation of the head-body-tail problem in the rest

of this chapter. Since q j = −d j for each job j, each variant of the EDD rule for
1| prec,r j,d j < 0|Lmax can be translated into its analogue for the head-body-tail
problem by selecting the jobs in order of nonincreasing delivery times. Similarly,
if q(S) = min j∈S q j for S⊆ N, then we can restate Lemma 3.4 in the following way.

Corollary 3.13. For any instance of 1|r j,d j < 0|Lmax, L∗max ≥ r(S)+ p(S)+q(S) for
any S⊆ N. 2

The nonpreemptive EDD rule (NEDD)

In Section 3.3 we have studied the structure of schedules produced by this rule. We
now use that information to investigate its performance for instances with arbitrary
processing requirements. We first derive two data-dependent bounds.

Lemma 3.14. For any instance of 1|r j|Lmax, let job c be a critical job and let job b
be an interference job in a critical sequence in a schedule produced by the nonpre-
emptive EDD rule; we then have
(i) Lmax(NEDD)−L∗max < qc;
(ii) Lmax(NEDD)−L∗max < pb.

Proof. Consider a schedule produced by the nonpreemptive EDD rule. Let Q be the
critical sequence corresponding to job c. By the definition of Q, the jobs in Q start
processing at r(Q) and are processed without idle time for p(Q) time units. Hence,
job c completes processing at r(Q)+ p(Q), and

Lmax(NEDD) = r(Q)+ p(Q)+qc.

Corollary 3.13 implies

L∗max ≥ r(Q)+ p(Q)+q(Q)> r(Q)+ p(Q).

By combining these inequalities, we obtain part (i) of the lemma.
Let job b be the interference job in Q, and let Q′ be the part of Q that follows job b.

By the definition of b, qb < qc = q(Q′). Since job b was selected to start processing
at time Sb, we have Sb < r(Q′), and

Lmax(NEDD) = Sb + pb + p(Q′)+qc < r(Q′)+ pb + p(Q′)+q(Q′).

Corollary 3.13 implies

L∗max ≥ r(Q′)+ p(Q′)+q(Q′).

These inequalities together prove part (ii) of the lemma. 2

Since L∗max ≥ max jq j, part (i) of Lemma 3.14 implies that the nonpreemptive EDD
rule is a 2-approximation algorithm for 1|r j,d j < 0|Lmax. Alternatively, since L∗max ≥
p(N), part (ii) also implies this result.

3.5. Approximation algorithms 19

In the precedence-constrained case, we first modify the data so that r j < rk and
q j > qk whenever j → k; each feasible schedule for the modified instance is fea-
sible for the original one and has the same value. When the nonpreemptive EDD
rule is applied to the modified instance without precedence constraints, the resulting
schedule will still respect these constraints, and has a value strictly less than twice
the optimum for the modified instance without precedence constraints. Clearly, this
feasible solution for the original instance of 1| prec,r j,d j < 0|Lmax is also within a
factor of 2 of the optimum for the more constrained problem.

Theorem 3.15. For any instance of 1| prec,r j,d j < 0|Lmax, Lmax(NEDD)/L∗max < 2.
2

It is not hard to give a family of two-job examples that show that the bounds of
Lemma 3.14 and Theorem 3.15 are tight (see Exercise 3.21).

The iterated nonpreemptive EDD rule (INEDD)

In Section 3.3, an iterated version of the nonpreemptive EDD rule did succeed where
just the rule itself was not sufficient. We will adopt a similar strategy here.

When applied to an instance of 1| prec,r j,d j < 0|Lmax, we view the nonpreemp-
tive EDD rule as the procedure that first preprocesses the data to ensure that r j < rk
and q j > qk whenever j→ k, and then builds a feasible schedule using the proper
rule.

The iterated nonpreemptive EDD rule applies this nonpreemptive EDD rule to
a series of at most n instances, starting with the original instance. If the schedule
obtained has a critical sequence with no interference job, then the algorithm termi-
nates. Otherwise, there is a critical sequence Q, ending with the critical job c and
containing the interference job b. Since the small delivery time qb of job b interferes
with the proof of optimality, we force job b to be processed after job c by increasing
its release time rb to rc and reapplying the nonpreemptive EDD rule. The algorithm
continues in this way, until either no interference job exists or n schedules have been
generated. From among the schedules generated, we select one with minimum Lmax
value. We claim that this is a 3/2-approximation algorithm.

Note that any schedule found is feasible for the original data. The original release
dates are respected, since release dates are only increased throughout the algorithm.
The precedence constraints are respected, since the data are modified in each itera-
tion.

The following two lemmas deal with complementary cases.

Lemma 3.16. For any instance of 1| prec,r j,d j < 0|Lmax, if there does not exist an
optimal schedule that is feasible with respect to the modified data used in the final
iteration of the iterated nonpreemptive EDD rule, then Lmax(INEDD)/L∗max < 3/2.

Proof. Consider an optimal schedule σ∗ for the original instance. Focus on the last
iteration in which σ∗ is still feasible with respect to the modified data. (These are

20 3. Minmax criteria

the data after any preprocessing by the nonpreemptive EDD rule in that iteration.)
Let L∗max denote the optimum value for both the original instance and the modified
instance considered in this iteration. In the schedule obtained in this iteration, let job
c be a critical job, Q its critical sequence, and job b the interference job, and let Lmax
denote its value. We have

Lmax = r(Q)+ p(Q)+qc ≤ rb + pb + p(Q−{b})+qc.

As a result of this iteration, rb is increased to rc, and σ∗ is no longer feasible. Thus,
job b must precede job c in σ∗, so that

L∗max ≥ rb + pb +qc.

It follows that

Lmax−L∗max ≤ p(Q−{b}).

Lemma 3.14(ii) implies that

Lmax−L∗max < pb.

Since L∗max ≥ p(N), we have

Lmax

L∗max
< 1 +

min{pb, p(Q−{b})}
L∗max

≤ 1 +
p(N)/2

p(N)
=

3
2
. 2

Lemma 3.17. For any instance of 1| prec,r j,d j < 0|Lmax, if there does exist an op-
timal schedule that is feasible with respect to the modified data used in the final
iteration of the iterated nonpreemptive EDD rule, then Lmax(INEDD)/L∗max < 3/2.

Proof. The algorithm terminates for one of two reasons: either there is no interfer-
ence job, or n schedules have been generated.

In the former case, the algorithm produces an optimal schedule for the final mod-
ified instance. This schedule must also be optimal for the original instance, since
both instances have the same optimum value.

In the latter case, we will show that one of the schedules produced must meet the
claimed bound. Observe that, in spite of the data modifications, the optimum value
remains unchanged throughout the algorithm. Lemma 3.4 (ii) now implies that, in
each iteration, Lmax − L∗max < pb, where job b is the interference job. The proof
would be complete if we could show that, in some iteration, pb ≤ p(N)/2, since
p(N) ≤ L∗max. However, this is true for all but at most one job! Could the same job
be the interference job for all n iterations? No: in each iteration, another job (the
critical one) is forced to precede it, and so after n− 1 iterations it would be the last
job, which cannot be an interference job. 2

We combine Lemmas 3.16 and 3.17 to obtain the following theorem.

Theorem 3.18. For any instance of 1| prec,r j,d j < 0|Lmax, Lmax(INEDD)/L∗max <
3/2.

It is not hard to show that this bound is tight (see Exercise 3.22).

3.5. Approximation algorithms 21

A polynomial approximation scheme

The crucial fact in the proof of Theorem 3.18 is that there is at most one job with pro-
cessing time greater than p(N)/2. Can we obtain better performance guarantees by
using the more general observation that there are at most k−1 jobs with a processing
time greater than p(N)/k? Yes, this is possible indeed, at least if we are willing to
restrict attention to the problem without precedence constraints.

Let k be a fixed positive integer. Call a job l long if pl > p(N)/k. Suppose that,
somehow, we know the starting time S∗l of each long job l in an optimal schedule
σ∗, as well as the value L∗max. We can use this information to produce a near-optimal
schedule. Modify the release date and delivery time of each long job l as follows:

rl := S∗l , ql := L∗max− (S∗l + pl).

The modified instance has the same optimal value L∗max as the original instance, since
σ∗ is still feasible and its value is unchanged. Also, for each long job l we now have
that ql ≥ q j for all of its successors j in σ∗.

Now apply the nonpreemptive EDD rule to the modified instance to obtain a
schedule σ. We claim that σ has a value Lmax < (1 + 1/k)L∗max. Let job c be a
critical job in σ, and let Q be its critical sequence. If Q does not have an interference
job, then σ is optimal. Otherwise, we will show that the interference job b is not a
long job; hence, pb ≤ p(N)/k ≤ L∗max/k, and Lemma 3.14(ii) implies the claimed
performance bound. Suppose, for sake of contradiction, that job b is a long job. We
have rb < rc and qb < qc. The first inequality in combination with S∗b = rb implies
that job b precedes job c in σ∗. The second inequality in combination with the above
observation regarding the successors of long jobs in σ∗ implies that c precedes b in
σ∗. This is a contradiction.

Of course, we have no way of knowing when the long jobs start in an optimal
schedule. We avoid this difficulty as follows. Suppose that, rather than the starting
times of the long jobs in σ∗, we just know the positions at which they occur in σ.
This knowledge is sufficient for us to reconstruct σ. All we need to do is to apply the
nonpreemptive EDD rule to the n jobs, subject to the condition that, when a long job
occupies the next position in σ, then that job is scheduled next.

Once again, we have no way of knowing the positions of the long jobs in σ.
However, there are at most k− 1 long jobs, and hence there are O(nk−1) ways to
assign the long jobs to positions in a sequence of n jobs. Our algorithm Ak tests
each of these possibilities and chooses the best schedule. The resulting schedule is
guaranteed to be at least as good as σ. Since each application of the nonpreemptive
EDD rule takes O(n log n) time, Ak runs in O(nk log n) time, which is polynomial
for any positive constant k.

Theorem 3.19. The family of algorithms {Ak} is a polynomial approximation scheme
for 1|r j,d j < 0|Lmax. 2

This is the best result that we can reasonably expect to obtain for a strongly NP-
hard problem, since the existence of a fully polynomial approximation scheme would

22 3. Minmax criteria

imply that P=NP (cf. Chapter 2). It is not clear how the scheme should be ex-
tended to handle precedence constraints. A polynomial approximation scheme for
1| prec,r j,d j < 0|Lmax does exist, but is beyond the scope of this book.

Exercises
3.20. Prove Theorem 3.12. (Hint: How does algorithm A perform on the type of
instance constructed in the proof of Theorem 3.11?)
3.21. Give a family of two-job instances showing that the performance bounds of
the nonpreemptive EDD rule given in Lemma 3.14 and Theorem 3.15 are tight.
3.22. Prove that the performance bound of the iterated nonpreemptive EDD rule
given in Theorem 3.18 is tight.
3.23. Give a tight performance analysis of the following algorithm for
1|r j,d j < 0|Lmax: Run the nonpreemptive EDD rule on both the original instance
and its inverse, and choose the better schedule.
3.24. Show that the following procedure is a 3/2-approximation algorithm for
1|r j,d j < 0|Lmax: Run the nonpreemptive EDD rule. If there is no interference job b,
output this schedule. Otherwise, let A = { j : r j ≤ q j, j 6= b}, B = { j : r j > q j, j 6= b},
and construct a second schedule by first scheduling the jobs indexed by A in order of
nondecreasing release dates, then job b, and finally the jobs indexed by B in order of
nonincreasing delivery times; output the better schedule.

3.6. Enumerative methods

Although 1| prec,r j|Lmax is strongly NP-hard, computational experience has shown
that it is not such a hard problem. There exist clever enumerative algorithms that
perform remarkably well. In fact, this success has motivated the use of these algo-
rithms for the computation of lower bounds for flow shop and job shop problems,
which appear to pose greater computational challenges (see Chapters 12 and 13).

We will present two branch-and-bound algorithms to solve 1|r j|Lmax. Once again,
it will be convenient to view the problem in its head-body-tail formulation.

First branch-and-bound algorithm

This is a relatively simple method. The branching rule generates all feasible sched-
ules by making all possible choices for the first position in the schedule; for each of
these choices it considers all possible choices for the second position, and so on. It
is possible to exclude certain choices as being dominated by others. For example, it
would be unfortunate to select as the next job one whose release date is so large that
another job can be scheduled prior to it. More precisely, let S denote the set of jobs
assigned to the first l−1 positions, and let t be the completion time of the last job in
S; for the lth position, we need consider a job k only if

rk < min j 6∈S{max{t,r j}+ p j}.

3.6. Enumerative methods 23

If this inequality does not hold, then the job minimizing the right-hand side could be
made to precede job k without delaying its processing. Thus, we are sure that there
exists an optimal schedule that satisfies this restriction.

We next consider the way in which a lower bound is computed for each node in
the search tree. An attractive possibility is to schedule the remaining jobs from time
t onwards while allowing preemption. The preemptive EDD solves this problem in
O(n log n) time (cf. Section 3.2).

Finally, we must specify a search strategy, which selects the next node of the
tree for further exploration. A common rule is to select a node with minimum lower
bound value. Whereas this rule helps to limit the number of nodes examined, the
overhead in implementing the approach may overwhelm its advantages. A simple
alternative is to do a depth-first search of the tree: the next node is a child of the
current node (perhaps the one with minimum lower bound value); when all children
of a node have been examined, the path towards the root is retraced until a node with
an unexplored child is found.

A nice aspect of this approach is that it can be applied to solve other NP-hard
1|r j| fmax problems in an analogous way.

Second branch-and-bound algorithm

The second method makes a more extensive use of the mathematical structure that
was developed in this chapter. The main idea is that each node in the search tree
will correspond to a restricted instance of the problem, on which we will run the
nonpreemptive EDD rule. The restrictions imposed on the instance are nothing more
than precedence constraints between certain pairs of jobs. These constraints will be
incorporated by modifying the release dates and the delivery times, as we have done
throughout this chapter.

Consider a particular node in the tree and apply the nonpreemptive EDD rule to
the corresponding instance. Suppose that the schedule obtained has a critical se-
quence with no interference job. This means that the schedule is optimal for the
modified data or, in other words, optimal subject to the precedence constraints spec-
ified in that node.

On the other hand, suppose that there is an interference job b. Let Q′ be the set
of the jobs in the critical sequence that follow job b, and let Lmax be the value of the
schedule. We know that

Lmax = Sb + pb + p(Q′)+q(Q′)< r(Q′)+ pb + p(Q′)+q(Q′).

Consider another schedule in which some job in Q′ precedes job b and another in Q′

follows it. The proof of Lemma 3.4 implies that the value of this schedule must be at
least r(Q′)+ pb + p(Q′)+q(Q′), and so it is worse than the schedule just obtained.
Hence, we may further restrict attention to those schedules in which job b either
precedes all of the jobs in Q′ or follows all of them. This gives us our branching
rule. Each node will have two children, each corresponding to one of these two
additional constraints. Since we use the nonpreemptive EDD rule, we can enforce

24 3. Minmax criteria

the first constraint by setting

qb := max j∈Q′ q j, (3.3)

and the second one by

rb := max j∈Q′ r j. (3.4)

A simple way to compute a lower bound for a node is to take the maximum
of r(Q′)+ p(Q′)+ q(Q′), r(Q′ ∪{b})+ p(Q′ ∪{b})+ q(Q′ ∪{b}), and the lower
bound of its parent. Note that, although job b and Q′ are determined by running the
nonpreemptive EDD rule on the parent, the release dates and delivery times have
been updated afterwards.

As in any branch-and-bound algorithm, a node is discarded if its lower bound is
no smaller than the global upper bound, i.e., the value of the best schedule found
thus far. An advantage of using the nonpreemptive EDD rule at each node is that
each time we obtain a new feasible solution, which may improve the upper bound.
For the same purpose, we also evaluate the schedule in which job b follows the jobs
in Q′. The search strategy always selects a node with minimum lower bound.

The following trick can help to restrict the instance for a new node in the tree even
further. Suppose there is a job k, k 6∈ Q′∪{b}, for which r(Q′)+ pk + p(Q′)+q(Q′)
exceeds the upper bound. By the same reasoning as above, we conclude that in
any better schedule job k either precedes or follows all of the jobs in Q′. If also
r(Q′)+ p(Q′)+ pk + qk exceeds the upper bound, then job k must precede Q′, and
we set qk := max j∈Q′q j. Similarly, if rk + pk + p(Q′) + q(Q′) exceeds the upper
bound, then job k follows Q′, and we set rk := max j∈Q′r j.

In comparing the two branch-and-bound methods, one may wonder how the two
lower bound procedures relate. In this respect, Theorem 3.5 implies that the pre-
emptive bound dominates the simple bound of the second algorithm. Why does the
second algorithm neglect to run a superior bounding procedure? This is merely a
question of balancing the sorts of work done by an enumerative method. It takes
more time to obtain a better bound, and it is not clear a priori whether the improved
lower bound justifies the additional work. There are procedures that in some cases
even improve on the preemptive bound, but from an empirical point of view it ap-
pears to be preferable to use the simpler lower bound in case of the second branching
strategy. Indeed, computational experiments suggest that this algorithm is among the
current champions for solving 1|r j|Lmax.

Exercises
3.25. Prove that (3.3) and (3.4) enforce the desired precedence constraints not only
in each of the two child nodes generated, but also in all of their descendants.
3.26. Construct an instance of 1| prec,r j|Lmax which satisfies the property that r j <
rk and d j < dk whenever j→ k, while its L∗max value would decrease if the precedence
constraints would be ignored.
3.27. How can the two branch-and-bound algorithms be adapted to solve
1| prec,r j|Lmax?

3.6. Enumerative methods 25

Notes
3.1. Earliest Due Date and Least Cost Last rules. These rules are due to Jackson
(1955) and Lawler (1973).

Exercises 3.7 and 3.8 are from Monma (1980). Hochbaum and Shamir (1989)
gave an O(n log2 n) algorithm for the maximum weighted tardiness problem, 1||wTmax.
Fields and Frederickson (1990) gave an O(n log n+ |A|) algorithm for 1|prec|wTmax,
where A is the arc set of the precedence digraph.

3.2. Preemptive EDD and Least Cost Last rules. Horn (1974) observed that
1| pmtn,r j|Lmax and 1|r j, p j = 1|Lmax are solved by the preemptive EDD rule. Fred-
erickson (1983) gave an O(n) algorithm for 1|r j, p j = 1, d̄ j|−. Theorem 3.5 is due
to Carlier (1982); Nowicki and Zdrzalka (1986) observed that its proof is somewhat
more elusive than originally believed.

The procedure for modifying release and due dates so that the several variants
of the EDD rule automatically satisfy given precedence constraints was described
by Lageweg, Lenstra, and Rinnooy Kan (1976). Monma (1982) gave a linear-time
algorithm for 1| prec, p j = 1|Lmax.

The generalization of the Least Cost Last rule for solving 1| pmtn,r j| fmax is due
to Baker, Lawler, Lenstra, and Rinnooy Kan (1983). Exercises 3.10–3.12 are also
from their paper.

3.3. A polynomial-time algorithm for jobs of equal length. The algorithm for equal-
length jobs is due to Simons (1978). An alternative algorithm was proposed by
Carlier (1979). Garey, Johnson, Simons, and Tarjan (1981) gave an improved imple-
mentation of the decision algorithm, which runs in O(n log n) time.

3.4. NP-hardness results. Theorem 3.11 is due to Lenstra, Rinnooy Kan, and Brucker
(1977).

3.5. Approximation algorithms. Schrage (1971) proposed the nonpreemptive EDD
rule as a heuristic for 1|r j|Lmax, with the addition that ties on due date should be
broken by selecting a job with maximum processing time. For the head-body-tail
formulation, Kise, Ibaraki, and Mine (1979) showed that every left-justified sched-
ule is shorter than three times the optimum. They considered six approximation
algorithms, including the nonpreemptive EDD rule, and proved that all of them
have a performance ratio of 2. Potts (1980B) proposed the iterated nonpreemp-
tive EDD rule, which was the first method to achieve a better performance bound.
Hall and Shmoys (1992) showed that the procedure which applies the iterated non-
preemptive EDD rule to an instance and its inverse and selects the better sched-
ule is a 4/3-approximation algorithm. They observed that all approximation algo-
rithms proposed thus far could easily be extended to handle precedence constraints.
The polynomial approximation scheme presented is due to Lawler (–). Hall and
Shmoys (1992) gave a more efficient scheme: more precisely, they developed a fam-
ily of algorithms {A′k} that guarantees Lmax(A′k)/L∗max ≤ 1+1/k, where A′k runs in

26 3. Minmax criteria

O(n log n+nk16k2+8k) time. In a later paper, Hall and Shmoys (1990) extended their
scheme to the precedence-constrained problem.

Exercises 3.23 and 3.24 are from Kise, Ibaraki, and Mine (1979) and Nowicki and
Smutnicki (1994), respectively.

3.6. Enumerative methods. The first branch-and-bound algorithm is due to Baker
and Su (1974), and the second one to Carlier (1982). Woerlee (1991) showed that
the release date modification rule originally proposed by Carlier does not necessarily
enforce the desired precedence constraints. Exercise 3.25 is from Verkooijen (1991).
Carlier’s method is able to solve problem instances with up to 10,000 jobs, often
without branching. Vazacopoulos (1991) gave an instance for which the method
generates at least 2n/2 nodes.

Earlier branch-and-bound algorithms were given by Dessouky and Margenthaler
(1972) and by Bratley, Florian, and Robillard (1973). McMahon and Florian (1975)
proposed a lower bound that is not dominated by the preemptive bound. Lageweg,
Lenstra, and Rinnooy Kan (1976) extended the algorithms of Baker and Su and of
McMahon and Florian to the precedence-constrained problem, and demonstrated
that, if for a given problem instance the range of the release times is smaller than
the range of the delivery times, then it is computationally advantageous to apply the
McMahon-Florian algorithm to the inverse instance. Larson, Dessouky, and Devor
(1985) employed this idea in their branch-and-bound algorithm. Exercise 3.26 is
from Lageweg, Lenstra, and Rinnooy Kan (1976). Nowicki & Smutnicki (1987) dis-
cussed the relations between various lower bounds. Zdrzalka and Grabowski (1989)
considered extensions of these enumerative methods to 1| prec,r j| fmax.

Pan and Shi (2006) proposed new rules for bounding, problem reduction, branch-
ing and problem reversal, and tested these extensively on classes of hard instances.
Della Croce and T’kindt (2010) gave improved lower bounds.

Dominance results among the schedules may be used in the obvious way to speed
up enumerative procedures. Erschler, Fontan, Merce, and Roubellat (1982, 1983)
considered the decision problem 1|r j, d̄ j|−, and introduced dominance based on the
(r j, d̄ j) intervals.

