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Weighted number of late jobs

Eugene L. Lawler
University of California, Berkeley

Once it happened that two of the authors of this book found themselves circling an
airport in a dense fog. When the fog broke, they could see many other aircraft. In
fact, there were so many planes in the air it seemed unlikely that all of them could
land before running out of fuel. While waiting to reach earth again, the authors
amused themselves by applying their knowledge of scheduling theory to the situa-
tion. There were n planes to be scheduled for landing on a single runway, where
plane j carried w j passengers, required p j time units to land, and would run out of
fuel by time d j. The problem of minimizing the number of crashed planes, 1||∑U j,
could be solved in polynomial time. However, the problem of minimizing the num-
ber of passenger fatalities, 1||∑w jU j, was NP-hard. Because time was limited, it
seemed plausible that the flight controllers might choose to solve the easier prob-
lem. And since the authors were traveling in a very small plane, this observation was
reassuring. It provided additional motivation to write this book.

In this chapter we first show that the NP-hard problem confronting the flight con-
trollers, 1||∑w jU j, can be can be solved in O(nW ) time, where W = ∑w j, with a
minor modification of the knapsack algorithm described in Chapter 2. We then show
that a much streamlined version of the algorithm, due to Moore and Hodgson, solves
the problem 1||∑w jU j in O(n logn) time, under the condition that the processing
times and job weights are oppositely ordered. We also show that, although the prob-
lem 1|r j|∑U j is strongly NP-hard, it can be solved in O(n logn) time, provided that
the release dates and due dates are similarly ordered. Finally, we show that a consid-
erable elaboration of the knapsack algorithm solves the general preemptive problem
1|pmtn,r j|∑w jU j in O(nk2W 2) time, where k is the number of distinct release dates.

All of the computational results presented in this chapter are for independent jobs,
because NP-hardness results concerning precedence constraints are very limiting. In
particular, we show that even the problem 1|chains, p j = 1|∑U j is strongly NP-hard.
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2 5. Weighted number of late jobs

Figure 5.1. Form of an optimal schedule.

5.1. Some preliminaries

We begin with some simple but fundamental observations that hold for 1||∑w jU j,
1|pmtn,r j|∑w jU j, and for all special cases of these problems. First, we note the
following: because of the character of the ∑w jU j objective, if a given job j is sched-
uled to be late, it might as well be arbitrarily late. This means that, in the absence
of precedence constraints, there exists an optimal schedule in which all jobs that are
on time precede all jobs that are late. Second, we observe that the jobs that are on
time can be assumed to be scheduled by the following rule: always schedule the job
with the earliest due date. In the presence of release dates, this is an EDD rule which
may produce a schedule with preemptions. It follows that there must exist an optimal
schedule like that shown in Figure 5.1.

From the previous observations it follows that the problems 1||∑w jU j and
1|pmtn,r j|∑w jU j reduce to the problem of finding a maximum-weight feasible set
of jobs, where by a feasible set we mean a set of jobs that are all completed on time
when scheduled by the (extended) EDD rule, that is, this rule produces a feasible
schedule.

Throughout this chapter we shall normally assume that jobs are numbered in EDD
order, i.e.,

d1 ≤ d2 ≤ ...≤ dn.

We shall also employ the following notation. As in Chapter 3, if S ⊆ N = {1, ...,n},
let p(S) = ∑ j∈S p j, r(S) = min{r j| j ∈ S}, and similarly define w(S) = ∑ j∈S w j; fi-
nally, let C(S) denote the completion time of the last job in an (extended) EDD
schedule for the jobs indexed by S.

Exercises
5.1. Show that the following procedure computes maximum-cardinality feasible in-
dex set S for the problem 1|r j, p j = 1|∑U j: schedule the jobs in time, starting with S
empty. At each time t, from among all the unprocessed jobs j such that r j ≤ t < d j,
if any, add to S a job j with the earliest possible due date. Show that this algorithm
can be implemented to run in O(n logn) time.
5.2. The problem 1|r j, p j = 1|∑w jU j can be solved by applying the greedy matroid
algorithm, as follows. Index the jobs in nonincreasing order of job weights. Then
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process the jobs in order, solving the recurrence relations

S(0) = /0,

S( j) =

{
S( j−1)∪{ j}, if S( j−1)∪{ j} is feasible,
S( j−1), otherwise.

The set S(n) then indexes a maximum-weight feasible set of jobs. Show that this
algorithm can be implemented to run in O(n2) time.
5.3. Show that it is possible to solve the problem 1|p j = 1|∑U j in O(n) time. (Hint:
Start with an O(n) bucket sort of the due dates, by noting that any due date greater
than n can be reduced to n.)

5.2. Dynamic programming solution of 1||∑w jU j

The problem 1||∑w jU j is NP-hard because the special case 1|d j = d|∑w jU j is
equivalent to the NP-hard knapsack problem. But in Chapter 2 we showed that the
knapsack problem can be solved by a dynamic programming computation within the
pseudopolynomial time bound of O(nW ). We shall now show that a minor modifi-
cation of the dynamic programming computation solves 1||∑w jU j within the same
time bound.

The problem of finding a maximum-weight feasible set for the 1||∑w jU j problem
can be formulated as an integer linear programming problem:

maximize ∑w jx j

subject to p1x1 ≤ d1

p1x1 + p2x2 ≤ d2

p1x1 + p2x2 + p3x3 ≤ d3

...
...

p1x1 + p2x2 + p3x3 + ...+ pnxn ≤ dn

and

x j ∈ {0,1}, for j = 1,2, ...,n.

Note that when all the d j’s are equal, the last inequality implies all the others and the
problem reduces to the ordinary knapsack problem.

The triangular form of the inequality constraints enables us to employ a dynamic
programming procedure essentially the same as that described for the knapsack prob-
lem in Chapter 2. Let P( j)(w) denote the minimum total processing time for any
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feasible subset of jobs 1, ..., j that has total weight exactly w. Then we have

P(0)(w) =
{

0, if w = 0,
+∞, otherwise.

P( j)(w) =
{

min{P( j−1)(w),P( j−1)(w−w j)+ p j}, if P( j−1)(w−w j)+ p j ≤ d j,

P( j−1)(w), otherwise.
(5.1)

As before, there are O(W ) equations to solve at each of n iterations, j = 1,2, ...,n.
Each equation requires a constant number of arithmetic operations. It follows that the
values P(n)(w) can be computed in O(nW ) time; the maximum weight of a feasible
set is the largest value of w such that P(n)(w) is finite.

As we described in Chapter 2, the dynamic programming recurrence equations
can be solved by computing lists of dominant pairs (w,P( j)(w)). At each iteration
a list of candidate pairs is formed from the list existing at the end of the previous
iteration. This list is merged with the existing list, with dominated pairs discarded
in the course of the merge. In the case at hand, a pair (w+w j,P( j−1)(w)+ p j) is
discarded as infeasible at iteration j whenever P( j−1)(w)+ p j > d j, whereas in the
the knapsack problem a pair is discarded whenever P( j−1)(w)+ p j > d, where d is
the knapsack capacity.

Recall that in Chapter 2 we also described how to compute upper bounds on the
value of the solutions that can be obtained from pairs (w,P) and how to use these
bounds to eliminate pairs (w,P) whose bounds do not exceed the value of a known
feasible solution. We can compute comparable bounds for the problem 1||∑w jU j by
solving the linear programming relaxation of its integer programming formulation.
This relaxation turns out to be an interesting scheduling problem in its own right:
Let Vj denote the amount of processing of job j that is done after its due date d j.
Then the linear programming relaxation is equivalent to the problem of minimizing
weighted late work, i.e., 1|pmtn|∑w jVj. In Exercise 5.4 we ask the reader to devise
an efficient algorithm for solving this problem.

Exercises
5.4. Devise an O(n logn) algorithm for solving the weighted late work scheduling
problem 1||∑w jVj. Recall that it is easy to solve the linear-programming relaxation
of the knapsack problem, by including items in the knapsack in order of nonincreas-
ing ratio w j/p j, until the knapsack is completely filled, using a fraction of the last
item if necessary. Devise a similar algorithm for solving the linear programming re-
laxation of 1||∑w jU j. (Hint: Construct an optimal schedule by starting at the latest
due date and working backward in time.)
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5.3. A fully polynomial approximation scheme

In Chapter 2, we showed that it is possible to convert a pseudopolynomial-time algo-
rithm for the knapsack problem into a fully polynomial approximation scheme. The
O(nW ) algorithm for 1||∑w jU j given in Section 5.2 is, of course, a pseudopoly-
nomial-time algorithm. We shall now show how to construct a fully polynomial
approximation scheme for the 1||∑w jU j problem.

In the previous section, we have focused on the equivalent problem of finding a
maximum-weight feasible set of jobs. These problems are not equivalent from the
point of view of approximation: a ρ-approximation algorithm for finding a maximum-
weight feasible set need not be a ρ-approximation algorithm for 1||∑w jU j. For ex-
ample, the latter must produce an optimal schedule for instances in which all jobs can
be scheduled on time, whereas this is certainly not the case for the former. In contrast
to the analogous situation for 1|r j|Lmax, it is possible to obtain optimal solutions in
this particular case, by using the EDD rule.

Let W ∗ denote the minimum weight of a set of late jobs; hence W−W ∗ is the max-
imum weight of a feasible set. The dynamic programming algorithm for 1||∑w jU j
given in Section 5.2 generates O(W −W ∗) dominant pairs (w,P) in each of n iter-
ations, yielding a time bound of O(n(W −W ∗)). For our purposes, we will need
a slightly different algorithm, which has an O(nW ∗) running time. This can be
obtained by a similar dynamic programming approach that maintains pairs (w,P),
where w is the weight of a set of late jobs with processing time at most P, and the
notion of dominance is reversed (see Exercise 5.5).

As in the case of the knapsack problem, the principal technique used is to round
the data to have fewer significant digits, in order to make the dynamic programming
algorithm take less time. This rounding and rescaling technique will be augmented
by one further idea. We will first need to obtain a schedule of total weight that is
within a factor of n of the optimum. This will enable us to find an appropriate factor
δ, by which to rescale the data. Suppose that we find a schedule that minimizes
the maximum weight of a late job. Since this is the special case of 1|| fmax with
f j =w jU j, j = 1, ...,n, Theorem 3.3 implies that it can be solved using the least-cost-
last rule in O(n2) time; let w denote the maximum-weight late job in this schedule.
Clearly, w≤W ∗, and the schedule just obtained has late jobs of total weight at most
nw.

We now set

δ =
εw
n
,

and compute the rounded weights

w̄ j = b
w j

δ
c.

The claimed dynamic programming algorithm can be applied to the rounded instance
in O(nW ∗/δ) time.
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Let the minimum-weight set of late jobs for the original instance be indexed by S∗,
and let the set of late jobs in the schedule returned by the algorithm on the rounded
data be indexed by S̄. Note that δw̄ j ≤ w j ≤ δ(w̄ j +1), and so

∑
j∈S̄

w j ≤ δ|S̄|+ ∑
j∈S̄

δw̄ j.

Using the optimality of S̄ with respect to w̄ j, j = 1, ...,n, and the inequality |S̄| ≤ n,
we can further bound the right-hand side by

≤ δn+ ∑
j∈S∗

δw̄ j ≤ εw+ ∑
j∈S∗

w j ≤ (1+ ε)W̄ ∗.

Since W ∗/δ ≤ n2/ε, the algorithm runs in O(n3/ε) time. Thus we have shown the
following theorem.

Theorem 5.1. There exists a fully polynomial approximation scheme to solve the
problem 1||∑w jU j.

Exercises
5.5. Give a dynamic programming algorithm for 1||∑w jU j that runs in O(nW ∗)
time.
5.6. Give a fully polynomial approximation scheme to find a maximum-weight fea-
sible set of jobs.

5.4. The Moore-Hodgson algorithm

A simple and elegant algorithm of Moore and Hodgson solves the unweighted prob-
lem 1||∑U j in O(n logn) time. More generally, it solves the problem 1||∑w jU j
under the condition that processing times and job weights are oppositely ordered.
By this we mean that pi < p j implies wi ≥ w j, for all i and j. Note that opposite
ordering necessarily holds if either all p j = 1 or all w j = 1. Hence the special case of
opposite ordering of processing times and job weights is a common generalization
of the problems 1|p j = 1|∑w jU j and 1||∑U j.

The Moore-Hodgson algorithm is as follows: Starting with S(0) = /0, process the
jobs in EDD order, constructing feasible sets S( j), j = 1,2, ...,n, by the recurrence
relations

S( j) =

{
S( j−1)∪{ j}, if p(S( j−1)∪{ j})≤ d j,

S( j−1)∪{ j}−{l}, otherwise,
(5.2)

where
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l = argmax{pi|i ∈ S( j−1)∪{ j}}

= argmin{wi|i ∈ S( j−1)∪{ j}}.

The set S(n) is then a maximum-weight feasible set.
The Moore-Hodgson algorithm is efficiently implemented with a priority queue S

supporting the operations of insert and deletemax, as indicated below:

Algorithm 1: Moore-Hodgson algorithm
S := /0;
p(S) := 0;
for j = 1,2, . . . ,n do

insert(S, j);
p(S) := p(S)+ p j;
if p(S)> d j then

l := deletemax(S);
p(S) := p(S)− pl ;

end
end

Each of the n insertions and each of the at most n deletions requires O(logn) time.
Hence the overall running time required to generate a maximum-weight feasible set
S(n) is bounded by O(n logn).

Although the Moore-Hodgson algorithm seems quite unrelated to the dynamic
programming algorithm of Section 5.2, the two are closely related. We shall demon-
strate this by deriving the Moore-Hodgson algorithm from the list-making version of
the dynamic programming algorithm.

Recall that the input to iteration j of the dynamic programming algorithm is the
list of dominant pairs generated at iteration j−1:

(w(0),P( j−1)(w(0))),(w(1),P( j−1)(w(1))), ...,(w(k),P( j−1)(w(k))),

where

0 = w(0)< w(1)< ... < w(k),

0 = P( j−1)(w(0))< P( j−1)(w(1))< ... < P( j−1)(w(k))≤ d j−1.

Each pair (w(i),P( j−1)(w(i))) in the list of dominant pairs is realized by a feasible
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set S( j−1)(w(i))⊆ {1,2, ..., j−1}, with

w(S( j−1)(w(i))) = w(i)

p(S( j−1)(w(i))) = P( j−1)(w(i)).

Ordinarily, we could not expect these feasible sets to be related in any special way.
But when the processing times and job weights are oppositely ordered, a happy thing
occurs: the feasible sets form a tower. Specifically, each set S( j−1)(w(i)) contains
exactly one job j(i) that is not contained in the set S( j−1)(w(i−1)) which is imme-
diately below it in the tower. That is,

S( j−1)(w(0)) = /0⊆ S( j−1)(w(1)) = { j(1)}

⊆ S( j−1)(w(2)) = { j(1), j(2)} ⊆ ... (5.3)

⊆ S( j−1)(w(k)) = { j(1), j(2), ..., j(k)}.

from which it follows that

P( j−1)(w(i))−P( j−1)(w(i−1)) = p j(i), and w(i)−w(i−1) = w j(i), i = 1,2, ...,k.

Furthermore,

p j(1) ≤ p j(2) ≤ ...≤ p j(k) (5.4)

and

w j(1) ≥ w j(2) ≥ ...≥ w j(k). (5.5)

We shall refer to relations (5.3)-(5.5) as the tower-of-sets property of feasible sets.
At this point we may gain some insight from an example. Consider the following

problem data:

j 1 2 3 4 5
p j 2 1 5 4 3
w j 4 5 1 2 3

Assume that all due dates are very large, so that they are of no consequence. At
the end of iteration 4 we have the following list of dominant pairs,

(0,0),(5,1),(9,3),(11,7),(12,12),

which are plotted as dots in Figure 5.2. With reference to the Gantt charts shown in
Figure 5.3, we see that these pairs are realized by a tower of feasible sets:
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Figure 5.2. Graph of dominant pairs.

Figure 5.3. Gantt charts.
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S(4)(0) = /0⊆ S(4)(5) = {2}

⊆ S(4)(9) = {2,1}

⊆ S(4)(11) = {2,1,4}

⊆ S(4)(12) = {2,1,4,3}.

From the existing list of dominant pairs we form a list of candidates,

(3,3),(8,4),(12,6),(14,10),(15,15),

which are plotted as +’s in Figure 5.2. When the two lists are merged, and dominated
pairs discarded, the surviving pairs are

(0,0),(5,1),(9,3),(12,6),(14,10),(15,15).

Again with reference to Figure 5.3, we find that these pairs are realized by a tower
of feasible sets:

S(5)(0) = S(4)(0) = /0⊆ S(5)(5) = S(4)(5) = {2}

⊆ S(5)(9) = S(4)(9) = {2,1}

⊆ S(5)(12) = S(4)(9)∪{5}= {2,1,5}

⊆ S(5)(14) = S(4)(11)∪{5}= {2,1,5,4}

⊆ S(5)(15) = S(4)(12)∪{5}= {2,1,5,4,3}.

We shall prove by induction that the tower-of-sets property holds at each iteration.
For the base case of the induction, note that the property holds at the end of iteration
0 when the only dominant pair, (0,0), is realized by the empty set. Assume, by
inductive hypothesis, that the property holds at the end of iteration j−1. At iteration
j the candidate pairs that are formed are

(w(0)+w j,P( j−1)(w(0))+ p j)

(w(1)+w j,P( j−1)(w(1))+ p j), ...,

(w(k)+w j,P( j−1)(w(k))+ p j).

Let h be the largest index i, 1≤ i≤ k, if any, such that p j(i) ≤ p j and w j(i) ≥ w j.
(The case in which there is no such h is left as an exercise.) Recall that the existing
pairs

(w(1),P( j−1)(w(1))), ...,(w(h),P( j−1)(w(h)))
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can be rewritten as

(w(0)+w j(1),P
( j−1)(w(0))+ p j(1)), ...,(w(h−1)+w j(h),P

( j−1)(w(h−1))+ p j(h)).

Opposite ordering of processing times and job weights implies that these pairs re-
spectively dominate the candidate pairs

(w(0)+w j,P( j−1)(w(0))+ p j), ...,(w(h−1)+w j,P( j−1)(w(h−1))+ p j).

Furthermore, by rewriting the other existing pairs as

(w(h)+w j(h+1),P
( j−1)(w(h))+ p j(h+1)), ...,

(w(k−1)+w j(k),P
( j−1)(w(k−1))+ p j(k))

we see that they are, respectively, dominated by the candidate pairs

(w(h)+w j,P( j−1)(w(h))+ p j), ...,(w(k−1)+w j,P( j−1)(w(k−1))+ p j).

Hence the merged list at the end of iteration j contains the pairs

(w(0),P( j−1)(w(0))), ...,(w(h),P( j−1)(w(h))),

followed by the pairs

(w(h)+w j,P( j−1)(w(h))+ p j), ...,(w(k)+w j,P( j−1)(w(k))+ p j).

These pairs are realized by a new tower of feasible sets

S( j)(w(0)) = S( j−1)(w(0)) = /0

⊆ S( j)(w(1)) = S( j−1)(w(1)) = { j(1)}

⊆ S( j)(w(2)) = S( j−1)(w(2)) = { j(1), j(2)}

⊆ S( j)(w(h)) = S( j−1)(w(h)) = { j(1), ..., j(h)}

⊆ S( j)(w(h)+w j) = S( j−1)(w(h))∪{ j}= { j(1), ..., j(h), j}

⊆ S( j)(w(k−1)+w j) = S( j−1)(w(k−1))∪{ j}
= { j(1), ..., j(h), j, j(h+1), ..., j(k−1)}

⊆ S( j)((w(k)+w j) = S( j−1)(w(k))∪{ j}
= { j(1), ..., j(h), j, j(h+1), ..., j(k−1), j(k)}.

Of course, this is the case only if

P( j−1)(w(k))+ p j = p(S( j−1)∪{ j})≤ d j.

If not, the pair (w(k)+w j,P( j−1)(w(k))+ p j) is discarded and the last set in the new
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tower is either

S( j−1)(w(k−1))∪{ j}, if h < k,

or

S( j−1)(w(k)), if h = k.

In either case, it follows that the relation (5.3) holds at the end of iteration j. Since
properties (5.4) and (5.5) follow directly from the definition of h, we see that at the
end of iteration j, the tower-of-sets property holds.

It is now evident that list-making and list-merging is totally unnecessary. If we
know the largest set in the tower at any given iteration, then we know everything
about the tower. Furthermore, it is now a small step to verify that the Moore-Hodgson
recurrence relations are designed to compute the largest set S( j) at iteration j from the
largest set S( j−1) at iteration j−1. Thus the Moore-Hodgson algorithm is, in effect,
a streamlined version of the dynamic programming computation for the problem
1||∑w jU j.

As a final note, observe that the algorithm does not require that either processing
times or job weights be integers. Furthermore, the maximum-weight feasible set that
is computed is invariant under changes in job weights, provided the relative ordering
of the weights is unchanged (see Exercises 5.10 and 5.11).

Exercises
5.7. Describe how to determine in O(n logn) time whether or not processing times
and job weights are oppositely ordered.
5.8. Prove that an instance of the knapsack problem with oppositely ordered w j’s
and p j’s can be solved by filling the knapsack with items in nonincreasing order of
the ratios w j/p j, until no further item can be added. (No item is fractionalized.)
5.9. Complete the proof of the Moore-Hodgson algorithm by supplying the argu-
ment for the case in which there is no index h, as defined in the inductive proof.
5.10. The following greedy procedure is an alternative to the Moore-Hodgson algo-
rithm (but requires O(n2) running time; cf. Exercise 5.2). Index the jobs in nonin-
creasing order of job weights and in nondecreasing order of processing times. Then,
starting with S(0) = /0, process the jobs in this order, solving the recurrence relations

S( j) =

{
S( j−1)∪{ j}, if S( j−1)∪{ j} is feasible,
S( j−1), otherwise.

Prove that the set S(n) computed by this procedure is the same as the set S(n) com-
puted by the Moore-Hodgson algorithm.
5.11. Prove that the algorithm in the previous exercise computes a feasible set S(n)

satisfying the following (very strong) optimality property: The weight of the ith
weightiest job in S(n) is at least as great as the weight of the ith weightiest job in any
other feasible set.
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5.12. (a) Suppose that a certain feasible subset R of jobs is required to be on time.
Describe how to modify the Moore-Hodgson algorithm to accommodate this con-
straint. (b) Suppose that, in addition to a due date d j, each job j has a (hard) deadline
d̄ j ≥ d j. Suppose that our objective is to minimize ∑U j, subject to satisfaction of
all the deadlines. Show that the problem posed in part (a) is a special case of this
problem. (Note: The problem 1|d̄ j|∑U j has been shown to be NP-hard.)
5.13. Describe how to adapt the Moore-Hodgson algorithm to solve the problem
1|pmtn,r j|∑w jU j, under the condition that processing times and job weights are
oppositely ordered and, in addition, release dates and due dates are oppositely or-
dered.
5.14. Opposite ordering of release dates and due dates is a special case of nesting
of release date-due date intervals. (Intervals [r j,d j], j = 1,2, ...,n, are said to be
nested if for all pairs j,k, either [r j,d j] and [rk,dk], are disjoint (except possibly at an
end point) or one interval is contained in the other. Generalize the algorithm derived
for Exercise 5.13 to solve 1|pmtn,r j|∑w jU j in the special case that processing times
and job weights are oppositely ordered and release date-due date intervals are nested.
(Hint: Form a rooted tree (or a forest of trees) in which the nodes are identified
with intervals and the children of a node are identified with the maximal intervals
contained within it. Work from the leaves of the tree upward, computing a maximum
weight feasible set at each node. You will probably need a data structure supporting
the operations of insert, deletemax, and merge, each of which can be implemented to
run in O(logn) time. The algorithm should run in O(n logn) time.)

5.5. Similarly ordered release dates and due dates

Release dates make things much more difficult. The problem 1|r j|∑U j is strongly
NP-hard, as can be shown by straightforward transformation from 3-PARTITION
(see Exercise 5.19). It follows that there is no polynomial-time algorithm for
1|r j|∑U j and no pseudopolynomial-time algorithm for 1|r j|∑w jU j, unless P = NP.
Nevertheless, it is possible to generalize the dynamic programming algorithm of Sec-
tion 5.2 to solve 1|r j|∑w jU j in the case that release dates and due dates are similarly
ordered. By this we mean that di < d j implies ri ≤ r j, for each pair of jobs i and j.
Accordingly, in this section we shall hereafter assume that the jobs have been given
an EDD numbering such that

r1 ≤ r2 ≤ ...≤ rn,and
d1 ≤ d2 ≤ ...≤ dn.

Under this condition, there is no advantage to preemption and the problems
1|r j|∑w jU j and 1|pmtn,r j|∑w jU j are equivalent. Furthermore, the extended EDD
rule produces schedules with no preemptions.

Let C( j)(w) denote the earliest completion time of a feasible subset of jobs
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1,2, ..., j having total weight exactly w. Generalizing the recurrences (5.1), we have

C(0)(w) =
{

0, if w = 0,
+∞, otherwise,

C( j)(w) =


min{C( j−1)(w),max{r j,C( j−1)(w−w j)}+ p j},

if max{r j,C( j−1)(w−w j)}+ p j ≤ d j,

C( j−1)(w), otherwise.
(5.6)

As in the case of (5.1), there are O(W ) equations to solve at each of n iterations, and
each equation requires a constant number of arithmetic operations. Hence the values
C(n)(w) can be computed in O(nW ) time. The maximum weight of a feasible set is
given by the largest value of w such that C(n)(w) is finite.

It happens that when job weights are equal, a variation of the Moore-Hodgson
algorithm computes a maximum-cardinality feasible set in O(n logn) time. Let q j ≤
p j be an effective processing time that is imputed to job j, as we shall describe later,
and define

q(S) = ∑
j∈S

q j,

for any set S ⊆ {1, ...,n}. Starting with S(0) = /0, we process the jobs in EDD order,
constructing feasible sets S( j), j = 1,2, ...,n, by the recurrence relations

S( j) =

{
S( j−1)∪{ j}, if q(S( j−1)∪{ j})≤ d j− r j,

S( j−1)∪{ j}−{l} otherwise.
(5.7)

where

l = argmax{qi|i ∈ S( j−1)∪{ j}}.

The set S(n) is then a maximum-cardinality feasible set.
The inductive proof argument that we shall make to justify the above recurrence

relations for 1|r j|∑U j, under the condition of similarly ordered release dates and due
dates, parallels that of the previous section. Before proceeding with this argument,
let us try to gain some insight from a numerical example with the following problem
data:

j 1 2 3 4 5
r j 1 2 3 5 6
p j 3 7 5 3 3

Assume that all due dates are very large and hence are of no consequence. The
dominant pairs existing at the end of iteration 4 are of the form (i,C(4)(i)), i =
0,1, ...,4. These dominant pairs, plotted as dots in Figure 5.4, are as follows:
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Figure 5.4.

Figure 5.5.
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(0,0),(1,4),(2,8),(3,12),(4,19).

With reference to Figure 5.5, we observe that these existing dominant pairs are
realized by a tower of feasible sets:

S(4)(0) = /0⊆ S(4)(1) = {1}

⊆ S(4)(2) = {1,4}

⊆ S(4)(3) = {1,4,3}

⊆ S(4)(4) = {1,4,3,2}.

Candidate pairs (i + 1,max{r5,C(4)(i)}+ p5), i = 0,1, ...,4, are formed from the
existing list. These are plotted as +’s in Figure 5.4, and are as follows:

(1,6),(2,9),(3,11),(4,15),(5,22).

The candidate pairs (1,6) and (2,9) are each dominated by the existing pair (2,8).
The existing pairs (3,12) and (4,19) are respectively dominated by the candidate
pairs (3,11) and (4,15). Hence when the two lists of pairs are merged, the surviving
dominant pairs are

(0,0),(1,4),(2,8),(3,11),(4,15),(5,22).

Again with reference to Figure 5.5, we see that these pairs are again realized by a
tower of feasible sets:

S(5)(0) = S(4)(0) = /0⊆ S(5)(1) = S(4)(1) = {1}

⊆ S(5)(2) = S(4)(2) = {1,4}

⊆ S(5)(3) = S(4)(2)∪{5}= {1,4,5}

⊆ S(5)(4) = S(4)(3)∪{5}= {1,4,5,3}

⊆ S(5)(5) = S(4)(4)∪{5}= {1,4,5,3,2}.

In general, the input to iteration j is a list of dominant pairs,

(0,C( j−1)(0)),(1,C( j−1)(1)), ...,(k,C( j−1)(k)),

where each pair (i,C( j−1)(i)) is realized by a feasible set S( j−1)(i), with

|S( j−1)(i)|= i,

c(S( j−1)(i)) =C( j−1)(i).

(Recall that, by definition, c(S) is the time of completion of the last job in an extended
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EDD schedule for S.) We assert that the feasible sets form a tower:

S( j−1)(0) = /0⊆ S( j−1)(1) = { j(1)}

⊆ S( j−1)(2) = { j(1), j(2)}
... (5.8)

⊆ S( j−1)(k) = { j(1), j(2), ..., j(k)}.

For each j(i) ∈ S( j−1)(k), i = 1,2, ...,k, define

q j(i) = max{r j,C( j−1)(i)}−max{r j,C( j−1)(i−1)}. (5.9)

We assert that

q j(1) ≤ q j(2) ≤ ...≤ q j(k), (5.10)

and refer to (5.8) and (5.10) as the tower-of-sets property for this problem.
It is useful to point out that (5.9) is equivalent to the following less compact way

to determine the effective processing time:

q j(i) =


0, if C( j−1)(i)≤ r j,

C( j−1)(i)−C( j−1)(i−1), if r j ≤C( j−1)(i−1),
C( j−1)(i)− r j, if C( j−1)(i−1)< r j <C( j−1)(i).

The third condition holds for at most one of q j(i), i = 1, ...,k. It is not hard to verify
that in each of the three cases, q j(i) ≤ p j(i): the additional processing of job j(i) can
not delay the completion time of the extended EDD schedule by more than p j(i) time
units beyond the maximum of the completion time for jobs j(1), ..., j(i− 1) and its
release date.

We show next that the effective processing times play an important implicit role
in determining the dominating pairs after iteration j of the dynamic programming
algorithm. To perform iteration j, we form a list of candidate pairs,

(i+1,max{r j,C( j−1)(i)}+ p j), i = 0,1, ...,k.

Let h be the largest index i, 1≤ i≤ k, if any, such that q j(i) ≤ p j. (As in Section 5.4,
the case in which there is no such h is left as an exercise.) For i = 1, ...,h,

p j ≥ q j(i) = max{r j,C( j−1)(i)}−max{r j,C( j−1)(i−1)}

≥C( j−1)(i)−max{r j,C( j−1)(i−1)},

and so it follows that the existing pairs

(1,C( j−1)(1)), ...,(h,C( j−1)(h))
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respectively dominate the candidate pairs

(1,max{r j,C( j−1)(0)}+ p j), ...,(h,max{r j,C( j−1)(h−1)}+ p j).

Furthermore, when i > h, we have that q j(i) > p j ≥ 0, which implies that q j(i) =

C( j−1)(i)−max{r j,C( j−1)(i−1)}. As a result,

p j < q j(i) =C( j−1)(i)−max{r j,C( j−1)(i−1)},

and so the candidate pairs

(h+1,max{r j,C( j−1)(h)}+ p j), ...,(k,max{r j,C( j−1)(k−1)}+ p j).

respectively dominate the existing pairs

(h+1,C( j−1)(h+1)), ...,(k,C( j−1)(k)).

Hence the merged list at the end of iteration j contains the pairs

(0,C( j−1)(0)), ...,(h,C( j−1)(h)),

followed by the pairs

(h+1,max{r j,C( j−1)(h)}+ p j), ...,(k+1,max{r j,C( j−1)(k)}+ p j).

These pairs are realized by a new tower of feasible sets

S( j)(0) = S( j−1)(0) = /0

⊆ S( j)(1) = S( j−1)(1) = { j(1)}

⊆ S( j)(2) = S( j−1)(2) = { j(1), j(2)} ⊆ ...

⊆ S( j)(h) = S( j−1)(h) = { j(1), ..., j(h)}

⊆ S( j)(h+1) = S( j−1)(h)∪{ j}= { j(1), ..., j(h), j} ⊆ ...

⊆ S( j)(k) = S( j−1)(k−1)∪{ j}= { j(1), ..., j(h), j, j(h+1), ..., j(k−1)}

⊆ S( j)(k+1) = S( j−1)(k)∪{ j}= { j(1), ..., j(h), j, j(h+1), ..., j(k−1), j(k)}.

That is, this is the case if

max{r j,C( j−1)(k)}+ p j ≤ d j.

If not, the pair (k+1,max{r j,C( j−1)(k)}+ p j) is discarded and the largest set in the
new tower is either

S( j−1)(k−1)∪{ j}, if h < k,
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or

S( j−1)(k), if h = k.

This shows that property (5.8) holds at the end of iteration j. Property (5.10) holds
as well, as we indicate below.

It would be inefficient to compute the q j(i) values at each iteration directly from
the definition (5.9). Instead, we shall derive a more efficient procedure. Let
j(1), j(2), ..., j(k) be the elements of S( j−1)(k) ordered to indicate the inclusions
(5.8). Suppose that h is the index computed above, so that the tower at the end of
iteration j is ordered

j(1), j(2), ..., j(h), j, j(h+1), ..., j(k);

of course, j(k) might be deleted, but assume that it is not. (An identical argument
proves the other case.) Let j′(i), i = 1, ...,k+ 1, denote the ith element of this se-
quence.

At the start of iteration j, each job k in this tower has effective processing time
qk. (For job j, let q j = p j.) We have already seen that

C( j)(i) =
{

C( j−1)(i), if i = 1, ...,h,
max{r j,C( j−1)(i−1)}+ p j, if i = h+1, ...,k+1.

This recurrence for C( j)(i) can be used to show that the effective processing times
used in iteration j,

q j′(i) = max{r j,C( j)(i)}−max{r j,C( j)(i−1)}, (5.11)

by applying the recurrence separately in each of the three cases: (a) i = 1, ...,h; (b)
i = h+ 1; and (c) i = h+ 2, ...,k+ 1. Therefore, to update these values for the next
iteration, we need only update them to reflect the new release date r j+1. If the release
date is increased by one unit, the effect is to decrease by one the effective processing
time of the first job in the tower that currently has a positive effective processing
time. The same idea can be used to update the release date from r j to r j+1 in (5.11),
by repeating this r j+1− r j times; this can clearly be made efficient by making the
maximum allowed reduction to q j′(i) at once, for each i = 1, ...,k, in that order.

We can now show that (5.10) is maintained by the algorithm. In iteration j, j is
inserted into the tower between j(h) and j(h+1) according q j’s place in the sorted
order of effective processing times. Furthermore, after the update just described, the
modified effective processing times are still sorted in nondecreasing order.

In order to implement the algorithm we propose to maintain two sets, S and S′,
where S contains jobs whose effective processing times are strictly positive and S′

contains jobs with zero effective processing times. At the end of iteration j, the
maximum feasible set in the tower is then S( j) = S∪ S′. We propose to implement
the set S by a priority queue that supports the operations of insert, deletemin, and
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deletemax. For the set S′, we need only support the operation insert. At iteration j,
the following subroutine is performed to modify the effective processing times.

modify( ):
r := r j− r j−1;
while (r > 0 and S 6= /0) do

i := deletemin(S);
q(S) := q(S)−qi;
if (qi ≤ r) then

insert(S′, i);
r := r−qi;

else
qi := qi− r;
insert(S, i);
q(S) := q(S)+qi;
r := 0;

end
end

We can now implement the recurrence relations (5.7) as follows:

similar( ):
S := /0;
S′ := /0;
q(S) := 0;
for j = 1 to n do

call modify( );
q j := p j;
insert(S, j);
q(S) := q(S)+q j;
if (q(S)> d j− r j) then

l := deletemax(S);
q(S) := q(S)−ql ;

end
end
return (S∪S′);

Note that O(n) of each of the operations insert, deletemin, and deletemax are per-
formed in the course of the computation. Each of these operations takes O(logn)
time. Hence the overall running time of the algorithm is bounded by O(n logn).

Exercises
5.15. Devise an example to show that the tower-of-sets property (5.8),(5.10), does
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not hold for 1|r j|∑w jU j with similarly ordered release dates and due dates and with
oppositely ordered processing times and weights.
5.16. Show that the tower-of-sets property does hold for the problem 1|r j, p j =
1|∑w jU j in the case of similarly ordered release dates and due dates. Devise an
O(n logn) algorithm for solving this problem (cf. Exercise 5.2).
5.17. If Vj is defined as in Section 5.4, show that the problem 1|pmtn,r j|∑w jVj
can be solved in O(n logn) time, under the condition that [r j,d j] intervals are nested.
Processing times and job weights may be arbitrary. (Hint: Modify the algorithm for
Exercise 5.14, so as to remove jobs from an infeasible set S( j) in nonincreasing order
of the ratios wi/pi, if necessary fractionalizing the last job removed and reinserting
it, until p(S( j)) = d j− r j.)
5.18. Devise an O(nW 2) algorithm for 1|pmtn,r j|∑w jU j with nested release date-
due date intervals (and arbitrary processing times and job weights).
5.19. Show that 1|r j|∑U j is strongly NP-hard.

5.6. The general problem 1|pmtn,r j|∑w jU j

The problem 1|pmtn,r j|∑w jU j can be solved by dynamic programming in
O(nk2W 2) time, where k is the number of distinct release dates. When release dates
and due dates are similarly ordered, the dynamic programming recurrences special-
ize to (5.6), which can be solved in O(nW ) time. And when k = 1, the recurrences
further specialize to (5.1).

Our dynamic programming recurrences iteratively compute two types of values,
C( j)(r,w) and P( j−1)(r,r′,w). In the following definitions, j is an index, 1 ≤ j ≤ n,
r and r′ are release dates, r ≤ r′, and w is an integer, 0 ≤ w ≤W . Once again, we
assume the jobs are indexed in EDD order.

We define

C( j)(r,w) = min{c(S)},

where the minimum is taken with respect to feasible sets S such that

S⊆ {1,2, ..., j},r(S)≥ r, and w(S)≥ w.

If there is no such feasible set S, C( j)(r,w) = +∞. We also define P( j−1)(r,r′,w) to
be the minimum amount of processing after time r j in an extended EDD schedule,
with respect to feasible sets S such that

S⊆ {1,2, ..., j−1}, r(S)≥ r, c(S)≤ r′, and w(S)≥ w.

If there is no such feasible set, P( j−1)(r,r′,w) = +∞.
It follows from the above definitions that the maximum weight of a feasible set

is given by the largest value of w such that C(n)(rmin,w) is finite, where rmin =
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min j{r j}.
Computation of C( j)(r,w). We shall compute the values C( j)(r,w) in n iterations,

j = 1,2, ...,n, starting with the initial conditions

C(0)(r,w) =
{

r, if w = 0,
+∞, otherwise.

Observe that j cannot be contained in a feasible set S with r(S)> r j. Hence

C( j)(r,w) =C( j−1)(r,w), if r > r j,

≤C( j−1)(r,w), otherwise.

It follows that at iteration j we have only to compute the values of C( j)(r,w) for
which r ≤ r j. So let r ≤ r j and suppose S⊆ {1,2, ..., j} realizes the value C( j)(r,w).
We distinguish three cases, as follows.

Case 1. j 6∈ S. Then

C( j)(r,w) =C( j−1)(r,w).

Case 2. j ∈ S, and the processing of job j begins after all jobs in S−{ j} are
completed in the extended EDD schedule. We then have

C( j)(r,w) = max{r j,c(S−{ j})}+ p j.

We may assume that S−{ j} is such that

c(S−{ j}) =C( j−1)(r,w−w j).

(If not, replace S−{ j} by a feasible subset of {1,2, ..., j− 1 for which this is so.)
Then

C( j)(r,w) = max{r j,C( j−1)(r,w−w j)}+ p j.

Case 3. j ∈ S, and the processing of job j begins before all jobs in S− { j}
are completed in the extended EDD schedule of S. This means that there is idle
time within the interval [r j,c(S−{ j})] in the EDD schedule for S−{ j}. Recall
from Chapter 4 that a block indexes a maximal subset of jobs that are processed
continuously without idle time. Let S′ be the last block in the extended EDD schedule
of S−{ j}, i.e.,

r(S′) = max{r(B)|B a block of the extended EDD schedule of S−{ j}},
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where r(S′)> r j. Let r′ = r(S′) and w′ = w(S′). It must be the case that

c(S′) =C( j−1)(r′,w′),

else S is not optimal. We may also assume that the total amount of processing done on
jobs in (S−{ j})−S′ in the interval [r j,r′] does not exceed P( j−1)(r,r′,w−w j−w′).
This means that the total amount time available for the processing of job j in the
interval [r j,r′] is

(r′− r j)−P( j−1)(r,r(S′),w−w j−w(S′)),

and the amount of processing done on job j after time r′ is

max{0, p j− (r′− r j)+P( j−1)(r,r′,w−w j−w′)}.

Hence the completion time of the last job in S is

C( j−1)(r′,w′)+max{0, p j− (r′− r j)+P( j−1)(r,r′,w−w j−w′)}. (5.12)

Now observe that the expression (5.12) must be minimum with respect to sets S′,
with r(S′)> r j, w′ = w(S′)≤ w−w j. In other words,

C( j)(r,w) = min
r′,w′
{C( j−1)(r′,w′)+max{0, p j− r′+ r j +P( j−1)(r,r′,w−w j−w′)}}

Putting Cases 1, 2, and 3 together, for r ≤ r j we have the recurrence relations

C( j)(r,w) =

min


C( j−1)(r,w),
max{r j,C( j−1)(r,w−w j)}+ p j,

minr′,w′{C( j−1)(r′,w′)+max{0, p j− r′+ r j +P( j−1)(r,r′,w−w j−w′)}}

 ,

(5.13)

where the inner minimization is taken over all distinct release dates r′ > r j such that
r′ ∈ {r1,r2, ...,r j−1} and all integers w′, 0 < w′ ≤ w−w j. It is important to note that
(5.13) is valid only if the right hand side does not exceed d j ; if this is not so, set
C( j)(r,w) = +∞.

Computation of P( j−1)(r,r′,w). We shall now derive recurrence relations for com-
puting P( j−1)(r,r′,w), for all distinct release dates r,r′, with r ≤ r′.

We have as initial conditions

P( j−1)(r,r′,0) = 0.

If w > 0, then P( j−1)(r,r′,w) is realized by a nonempty set S ⊆ {1,2, ..., j−1}. We
distinguish two cases.
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Case 1. r(S)> r. Then

P( j−1)(r,r′,w)≤ P( j−1)(r+,r′,w),

where we define r+ to be the smallest distinct due date larger than r.
Case 2. r(S) = r. Let S′ ⊆ S be the block of S such that r(S′) = r, and let w(S’) =

w’. We may assume that c(S′) =C( j−1)(r,w′)). Hence the total amount of processing
done on S′ in the interval [r j,r′] is

max{0,C( j−1)(r,w′)− r j}.

Let r′′ be the smallest release date greater than or equal to C( j−1)(r,w′). It must be
the case that the total amount of processing done on S− S′ in the interval [r j,r′] is
P( j−1)(r′′,r′,w−w′). Hence the total amount of processing done on S in the interval
[r j,r′] is

max{0,C( j−1)(r,w′)− r j}+P( j−1)(r′′,r′,w−w′). (5.14)

Now observe that the expression (5.14) must be minimum with respect to sets S′,
with r(S′) = r, c(S′)≤ r′′ ≤ r′, and w(S′)≤ w. That is,

P( j−1)(r,r′,w) = min
0<w′≤w

{max{0,C( j−1)(r,w′)− r j}+P( j−1)(r′′,r′,w−w′)},

where r′′ is the smallest release date no less than C( j−1)(r,w′).
Putting the above two cases together, we have

P( j−1)(r,r′,w) =

min
{

P( j−1)(r+,r′,w),
min0<w′≤w{max{0,C( j−1)(r,w′)− r j}+P( j−1)(r′′,r′,w−w′)}

}
, (5.15)

giving us the recurrences we need.
We shall now analyze the time and space complexity of the dynamic program-

ming computation. At each of n iterations, j = 1,2, ...,n, there are O(k2W ) of the
P( j−1)(r,r′,w) values to compute, one for each combination of r,r′,w. By (5.15),
each P( j−1)(r,r′,w) is found by minimization over O(W ) choices of w′ ≤ w. Hence
the time required to compute the P( j−1)(r,r′,w) values at each iteration is bounded
by O(k2W 2). There are O(kW ) of the C( j)(r,w) values to compute, one for each com-
bination of r and w. By (5.13), each C( j)(r,w) is found by minimization over O(kW )
choices of r′,w′. Hence the time required to compute the C( j)(r,w) values at each
iteration is bounded by O(k2W 2). It follows that the overall time bound for these
computations is O(nk2W 2). Space requirements are clearly bounded by O(k2W ).

As we have observed, the maximum weight of a feasible subset can be obtained
by finding the maximum value of w such that C(n)(rmin,w) is finite. (The O(W )
time required for this is dominated by the time required for other computations.) In
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practice, however, one wants to be able to construct a maximum-weight feasible set,
not simply to find its weight. The most straightforward way to do this is to compute
an incidence vector of the set realizing each P( j−1)(r,r′,w) and C( j)(r,w) value. The
computation of these incidence vectors can be carried out with an expenditure of
O(n2k2W ) time, which is dominated by the O(nk2W 2) time bound obtained above.
However, because O(k2W ) n-vectors must be stored, this approach increases space
requirements to O(nk2W ).

We claim that it is possible to use pointers to construct a maximum-weight feasi-
ble set, while maintaining the time and space bounds of O(nk2W 2) and O(k2W ). We
leave this as an exercise.

The EDD Rule creates preemptions only at release dates. Hence when the jobs in
a maximum-weight feasible set are scheduled, at most k−1 preemptions are created,
at most one at each distinct release date other than the first.

Observe that when release dates and due dates are similarly ordered, there are no
release dates r′ > r j over which the inner minimization in (5.14) can be, hence these
recurrence relations simplify to

C( j)(r,w) = min
{

C( j−1)(r,w),
max{r j,C( j−1)(r,w−w j)}+ p j

}
.

Now let C( j)(w) =C( j)(rmin,w) and we have simply

C( j)(w) = min
{

C( j−1)(w),
max{r j,C( j−1)(w−w j)}+ p j

}
,

and we have the recurrence equations (5.6).
When all release dates are equal,

max{r j,C( j−1)(w−w j)}=C( j−1)(w−w j),

and the recurrence further simplifies to

C( j)(w) = min{C( j−1)(w),C( j−1)(w−w j)+ p j},

and we have the recurrence equations (5.1).

Exercises
5.20. Show that it is possible to use pointers to construct a maximum-weight feasible
set, while maintaining the time and space bounds of O(nk2W 2) and O(k2W ).
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5.7. Precedence constraints

When the jobs are related by precedence constraints, severely restricted versions of
the 1||∑w jU j problem become NP-hard. We will show below that the case of unit
weights and unit processing times, 1|prec, p j = 1|∑U j, is NP-hard. We will then
refine this result and show that it still holds for the case of chain-type precedence
constraints, where each job has at most one predecessor and at most one successor.

Theorem 5.2. 1|prec, p j = 1|∑U j is NP-hard in the strong sense.

Proof. We will show that the clique problem reduces to the decision version of
1|prec, p j = 1|∑U j. An instance of the clique problem is given by a graph G=(V,E)
and an integer k. The question is if G has a clique (i.e., a complete subgraph) on at
least k vertices.

Given an instance of clique, let l = (k
2) denote the number of edges in a clique of

size k. The corresponding instance of the scheduling problem will have n = |V |+ |E|
unit-time jobs. We introduce a job v for every vertex v ∈V and job e for every edge
e ∈ E, with a precedence constraint v→ e whenever v is an endpoint of e. Each
“vertex job” v has a due date dv = n, and each “edge job” e has a due date de = k+ l.
Note that no vertex job can be late in a schedule without idle time. We claim that
there is a schedule with at most |E|− l late jobs if and only if G has a clique of size
at least k.

Suppose that a clique on k vertices exists. We first schedule the k corresponding
vertex jobs in the interval [0,k]. In view of the precedence constraints, we can then
schedule the l jobs corresponding to the clique edges in the interval [k,k+ l] ; they
are on time. They are followed by the remaining vertex jobs in [k+ l, |V |+ l] and,
finally, the remaining edge jobs in [|V |+ l,n] ; these |E|− l edge jobs are late. This
schedule meets the claimed bound on the number of late jobs.

Conversely, suppose that there is a schedule in which at most |E|− l jobs are late,
or, equivalently, in which at least l = (k

2) edge jobs are completed by time k + l.
These jobs must be preceded by at least k vertex jobs. It follows that there is a set of
k vertex jobs that releases l edge jobs for processing or, in other words, that a clique
of size k exists. 2

Theorem 5.3. 1|chain, p j = 1|∑U j is NP-hard in the strong sense.

Proof. To simplify the exposition, we present the reduction in two stages. We first
show that the exact 3-cover problem reduces to the decision version of 1|chain|∑U j,
with general processing times. We then show that this problem can be reduced to an
equivalent problem with unit processing times.

An instance of exact 3-cover consists of a set T = {1, ...,3t} and a family S =
{S1, ...,Ss} of 3-element subsets of T . It is a yes-instance if S includes an exact
cover, i.e., a subfamily of t subsets whose union is T (cf. Figure 5.6(a).

The corresponding instance of 1|chain|∑U j will have a job i for each subset Si
and a job Ji j for each occurrence of an element j in a subset Si. More precisely, for
each Si = { j,k, l} ∈ S (i = 1, ...,s), we introduce four jobs, i, Ji j, Jik, Jil , which are
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Figure 5.6. Reduction of exact 3-cover to 1|chain|∑U j.

related by chain-like precedence constraints, i→ Ji j → Jik → Jil . Each ‘subset job’
i is of length 1, and each ‘occurrence job’ Ji j is of length js. The sum of all of the
processing times (and hence the length of the schedules we will be considering) is
denoted by d = s+∑

s
i=1 ∑ j∈Si js. All subset jobs i have due date d; none of these

can be late. Each occurrence job Ji j is assigned a due date di j defined by

di j = t + s+2s+ ...+ js = t + j( j+1)s/2, j ∈ Si, i = 1, ...,s.

We claim that there is a schedule with no more than 3(s− t) late jobs if and only if
there is an exact 3-cover.

Suppose that S includes an exact 3-cover S ′. We then construct the following
schedule (cf. Figure 5.6(b)). First, the t jobs i corresponding to the subsets Si ∈ S ′ are
scheduled in the interval [0, t]. Now note that each of these t subset jobs heads a chain
of three occurrence jobs such that the 3t elements to which these occurrences refer
are all distinct. That is, for every element j ∈ T , there is exactly one occurrence job
Ji j for which the preceding subset job i has been scheduled; this Ji j is now scheduled
in the interval [di j − js,di j]. In this way, 3t occurrence jobs occupy the interval
[t, t +3t(3t +1)s/2]; they are all on time. They are followed by the remaining s− t
subset jobs and, finally, the remaining 3(s− t) occurrence jobs; these latter jobs are
late. This schedule meets the claimed bound on the number of late jobs.

Conversely, suppose that there exists a feasible schedule in which at most 3(s− t)
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jobs are late, or, equivalently, in which at least 3t occurrence jobs are on time. This
implies that,

for every element j ∈ T, exactly one of its occurrence jobs Ji j is on time. (5.16)

The verification of this crucial implication is left to the reader (see Exercise 5.21).
Assertion (5.16), in turn, implies that the amount of time available for processing the
subset jobs that release these 3t occurrence jobs is bounded from above by

max
j∈T

di j−∑
j∈T

js = t +3t(3t +1)s/2−3t(3t +1)s/2 = t.

Hence, S must include a subfamily of at most t subsets whose union covers T . This
subfamily constitutes an exact 3-cover.

This completes the first stage of the proof. It remains to be shown that the schedul-
ing problem can be reduced to an equivalent problem with unit processing times.
This is straightforward. We replace each occurrence job Ji j by a chain of js unit-time
jobs, J(1)i j → ...→ J( js−1)

i j → J( js)
i j , with due dates d(1)

i j = ...= d( js−1)
i j = d, d( js)

i j = di j
( j ∈ Si, i = 1, ...,s). Given any feasible schedule in which the jobs of such a chain
are not processed consecutively, we can obtain another schedule by moving the first
js− 1 jobs of the chain to the right, up to the jsth one, thereby moving some other
jobs to the left. The new schedule is still feasible, since no precedence constraints are
violated, and it has no more late jobs, since the jobs that are moved to the right cannot
be late. Hence, each chain J(1)i j → ...→ J( js)

i j can be considered as a single job Ji j with
processing time js and due date di j. As for the size of the final 1|chain, p j = 1|∑U j
instance, note that it has only d < 9s2t jobs; the entire transformation is polynomial
because sufficiently small processing times have been chosen at the first stage. 2

Exercises
5.21. (a) Consider the 1||∑U j problem. Suppose that there are t nonempty job sets,
FSJ1, ...,FSJt , such that all jobs in FSJ j have a processing time j and a due date
1+2+ ...+ j ( j = 1, ..., t). Prove that in each optimal schedule exactly one job from
FSJ j finishes at its due date, while the other jobs from FSJ j are late ( j = 1, ..., t). (b)
Use (a) to verify assertion (5.16) in the proof of Theorem 5.3.

Notes
5.1. Some preliminaries. Each feasible set for an instance of the problem 1|r j, p j =
1|∑w jU j is an independent set of a transversal matroid, hence the algorithm de-
scribed in Exercise 5.2 is indeed an instance of the matroid greedy algorithm. The
observation that 1|p j = 1|∑U j can be solved in O(n) time is due to Monma (1982).

5.2. Dynamic programming solution of 1||∑w jU j. Karp (1972) gave the reduc-
tion of the knapsack problem to 1|d j = d|∑w jU j. The integer linear programming
formulation of 1||∑w jU j and the dynamic programming algorithm for solving this
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generalization of the knapsack problem are adapted from (Lawler & Moore, 1969).
Exercise 5.4 is due to Potts & Van Wassenhove (1988), who use linear relaxations as
lower bounds within a branch and bound procedure for 1||∑w jU j.

5.3. A fully polynomial approximation scheme. Theorem 5.1 is due to Gens & Lev-
ner (1978). By obtaining a preliminary upper bound on the optimum that is within a
factor of 2, Gens & Levner (1981) improved the running time to O(n2 logn+ n2k).
Exercise 5.6 is due to Sahni (1976). Ibarra & Kim (1978) gave a polynomial approx-
imation scheme to find a maximum feasible set for 1|d j = d, tree|∑w jU j.

5.4. The Moore-Hodgson algorithm. Moore (1968) suggested a less elegant algo-
rithm for the unweighted problem 1||∑U j but specifically credited the recurrences
(5.2) to a suggestion by his colleague Hodgson, hence the appellation Moore-Hodg-
son. Maxwell (1970) provided an alternative derivation of the Moore-Hodgson al-
gorithm based on ideas from linear and integer programming. The generalization
of the algorithm to oppositely ordered processing times and job weights was noted
by Lawler (1976A). Sidney (1973) observed that the algorithm could be adapted to
the case considered in Exercise 5.12. The NP-hardness of the problem 1|d̄ j|∑U j
was proved by Lawler (1982B). The Moore-Hodgson algorithm and the algorithm
of Lawler (1976A) were used to obtain lower bounds in the branch and bound pro-
cedure of Villareal & Bulfin (1983) to solve 1||∑w jU j with arbitrary weights and
processing times.

5.5. Similarly ordered release dates and due dates. The strong NP-hardness proof
of 1|r j|∑U j is due to Lenstra (–). An O(n2) dynamic programming solution of
1|r j|∑U j, under the condition of similar ordering of release dates and due dates, is
described by Kise, Ibaraki & Mine (1978). The O(n logn) algorithm for this problem
is due to Lawler (1982B). The tower-of-sets property is known to hold for a number
of special cases of 1|pmtn,r j|∑w jU j, aside from those mentioned in the exercises,
for example, as in the case that release dates and processing times are similarly or-
dered, and in opposite order to job weights, which is due to Lawler (–).

5.6. The general problem 1|pmtn,r j|∑w jU j. The dynamic programming algorithm
of this section is adapted from Lawler (1990), which improves on a less efficient
algorithm given earlier by Lawler (1982B).

5.7. Precedence constraints. Theorem 6.2 is due to Garey and Johnson (1976),
Theorem 6.3 to Lenstra and Rinnooy Kan (1980). Ibaraki, Kise, and Mine (1976)
proved that 1|chain,r j, p j = 1|∑U j is NP-hard.


