
Contents

7. Minsum criteria 1
Eugene L. Lawler
7.1. Total completion time, nonpreemptive scheduling 1
7.2. Total completion time, preemptive scheduling 3
7.3. Total weighted completion time, complexity 7
7.4. Other minsum criteria, complexity 10

i

7
Minsum criteria
Eugene L. Lawler
University of California, Berkeley

This is a fragmented chapter. Our focus is on the nonpreemptive and preemp-
tive minimization of total completion time in polynomial time. We also present a
pseudopolynomial-time algorithm for the minimization of total weighted completion
time and related problems. We review NP-hardness results without providing proofs,
and give pointers to the very few results on approximation and branch-and-bound.

7.1. Total completion time, nonpreemptive scheduling

In the absence of precedence constraints, we know that whatever jobs are performed
on a given machine in an optimal schedule, they will be performed on that machine
in SPT order. Recall formula (4.1) derived in Chapter 4:

∑C j = np1 +(n−1)p2 + · · ·+ pn.

We can solve the problem P||∑C j by coefficient matching: There are m 1’s, m
2’s, ..., m (n−1)’s, and m n’s to match with n p j values so as to obtain the smallest
possible weighted sum. It is clear that an optimal solution to this matching problem
is obtained by matching the m 1’s with the m largest p j’s, the m 2’s with the m next-
largest p j’s, and so forth, ending up by matching one of the coefficients dn/me with
the smallest p j.

Thus an optimal schedule for P||∑C j is as shown in Figure 7.1. One can also
state an extended SPT rule for identical parallel machines, as follows: Schedule the
jobs in time, with a decision point at the completion of a job. At each decision point
choose to process the shortest job that has not yet been assigned to a machine.

1

2 7. Minsum criteria

Figure 7.1. An optimal schedule for P||∑C j.

In the case of Q||∑C j, we notice that for the jobs assigned to machine i the for-
mula takes on the form:

∑C j = (n/si)p1 +((n−1)/si)p2 + ...+(1/si)pn.

Like P||∑C j, the problem Q||∑C j can be solved by coefficient matching, except that
now the coefficients are of the form k/si. The largest p j should be matched with
the smallest of these coefficients ... and the smallest p j should be matched with the
nth-largest of these coefficients.

Here is how to generate the coefficients k/si in nondecreasing order of size: Place
the fractions 1/si, i = 1,2, ...,m, into a priority queue Q supporting the operations of
delete-min and insert. Then

for h = 1,2, . . . ,n do
output k/si := delete-min(Q);
insert (k+1)/si into Q;

end

Clearly it is possible to match the coefficients and construct an optimal schedule in
O(n logn) time.

The problem R||∑C j can still be solved by coefficient matching. Note that, when
job j is scheduled in the kth last position on machine i, it contributes kpi j to the total
completion time. We now describe schedules in terms of 0-1 variables x(ik) j, where
x(ik) j = 1 if job j is the kth last job processed on machine i, and x(ik) j = 0, otherwise.
The problem is then to minimize

∑
i,k

∑
j

kpi jx(ik) j

7.2. Total completion time, preemptive scheduling 3

subject to

∑
i,k

x(ik) j = 1, for j = 1, . . . ,n;

∑
j

x(ik) j ≤ 1, for i = 1, . . . ,m, k = 1, . . . ,n;

x(ik) j ∈ {0,1}, for i = 1, ...,m, j,k = 1, ...,n.

The constraints ensure that each job is scheduled exactly once and that each posi-
tion on each machine is occupied by at most one job. This is a weighted bipartite
matching or assignment problem, so that we may replace the integrality constraints
by nonnegativity constraints without altering the feasible set. It can be solved in
O(n3) time.

Exercises
7.1. Let us say that two schedules for P||∑C j are equivalent if they differ only by a
renumbering of machines. Show that there exists at least

(m!)b(n/m)c−1

nonequivalent optimal schedules.
7.2. Show that the SPT rule solves P||∑w jC j for the special case in which processing
times and weights are oppositely ordered.
7.3. Suppose that machine i is not available until time ti ≥ 0, i.e., it must remain
idle until then. Show how to incorporate this condition into the matching problem
formulated for R||∑C j.
7.4. Show how to reduce the time required to set up the matching problem for
R||∑C j to O(n2 logn) time. Hint: For each job j, one need only consider the small-
est n coefficients of the form kpi j. For each job j establish a priority queue Q j to
generate the n smallest coefficients of this form.

7.2. Total completion time, preemptive scheduling

We now turn to preemptive scheduling of parallel machines with respect to the
∑C j criterion. It turns out that there is no advantage to preemption for the prob-
lem P|pmtn|∑C j (nor for P|pmtn|∑w jC j – see Section 7.3). That is, a schedule
that is optimal for an instance of P||∑C j is also optimal for a similar instance of
P|pmtn|∑C j.

The problem R|pmtn|∑C j is NP-hard in the strong sense. This is a surprising
result, in view of the polynomial-time solvability of R||∑C j. There are very few
problems for which allowing preemption makes the problem harder.

This leaves us with only the problem Q|pmtn|∑C j to consider in this section.
Knowing what we do about the ∑C j criterion, the SPT rule, and the solution of

4 7. Minsum criteria

the problem Q||∑C j, what might we conjecture about the structure of an optimal
schedule for Q|pmtn|∑C j? Our first, rather timid, guess might be that jobs will be
completed in SPT order. This conjecture is indeed true, though its demonstration is
nontrivial, as we shall see in proving Lemma 7.1. Our next guess might be to try the
following greedy prescription:

Preemptive SPT rule: Taking the jobs in SPT order, preemptively schedule each
successive job j in the available time on the m machines so as to minimize C j.

This rule produces a schedule that looks like that shown in Figure 7.2. That is,
job 1, the shortest job, is processed entirely on M1, the fastest machine. Job 2,
the second-shortest job, is processed on M2, the second-fastest machine, until job
1 is completed. Then job 2 is processed on M1 to completion. In general, job j
is scheduled for processing first on Mm, then on Mm−1,..., and finally on M1. This
makes C j as small as possible, given the time left available on the machines after
jobs 1,2, . . . , j−1 have been scheduled.

Figure 7.2. Preemptive SPT schedule for Q|pmtn|∑C j.

The procedure we have described requires O(n logn) time for the initial sort of
the jobs into SPT order and O(mn) time to construct the schedule. The schedule has
at most (m−1)(n−m/2) preemptions (see Exercise 7.6), and no preemptions at all
if the machines are identical. This latter observation proves our assertion that there
is no advantage to preemption in the case of P|pmtn|∑C j – provided the schedule
constructed by the preemptive SPT rule is indeed optimal. We shall now prove the
optimality of the schedule.

Lemma 7.1. For any instance of the Q|pmtn|∑C j problem, there exists an optimal
schedule in which the completion times of the jobs are in SPT order.

Proof. Let S be an optimal schedule in which Ci > C j with pi < p j. Prior to time
C j there are some periods during which job i but not j is processed, some periods
in which job j but not i is processed, and some periods in which both jobs i and j
are processed. Also, in the interval [C j,Ci] there are some periods in which job i is

7.2. Total completion time, preemptive scheduling 5

processed. We propose to replace the processing of job i in the interval [C j,Ci] with
processing of job j, and to interchange some fraction λ, 0 < λ < 1, of the processing
of i and j prior to time C j, thereby obtaining a feasible schedule S′ with completion
times C′i and C′j. Of each active period for job i prior to C j, a fraction λ of that active
period is given over to job j in S′, and vice versa. Observe that C′i ≤C j and C′j =Ci.

We must now show that there is a value of λ in the interval (0,1) such that the
schedule S′ can be constructed as we have suggested. Let ti, t j denote the total lengths
of time, and let σi, σ j denote the effective rates at which jobs i and j are processed
prior to time C j in schedule S. Let t ′i be the total length of time and σ′i be the effective
rate at which job i is processed in the interval [C j,Ci]. Then we have

σiti +σ
′
it
′
i = pi < p j = σ jt j. (7.1)

In order for S′ to be feasible, we must have

(1−λ)σiti +λσ jt j = pi,

(1−λ)σ jt j +λσiti +σ
′
it
′
i = p j.

Solving for λ, we obtain

λ =
σ′it
′
i

σ jt j−σiti

It follows immediately from (7.1) that

σ jt j−σiti > σ
′
it
′
i > 0,

and hence 0 < λ < 1.
Note that C′i +C′j ≤ Ci +C j, and the completion times of all other jobs are the

same in S′ as in S. It follows that a finite number of modifications of the type we
have described will transform S into an optimal schedule with completion times in
SPT order. 2

Theorem 7.2. The preemptive SPT rule computes an optimal schedule for
Q|pmtn|∑C j.

Proof. For convenience, assume that n = m, and that s1 ≥ s2 ≥ ·· · ≥ sm. (If n < m,
discard the m− n slowest machines, and if n > m, create n−m zero-speed dummy
machines.) Let S be the schedule computed by the preemptive SPT rule, with C1 ≤
C2 ≤ ·· · ≤Cn. From the structure of the schedule S, it is apparent that

s1C1 = p1,

s2C1 + s1(C2−C1) = p2,

s3C1 + s2(C2−C1)+ s1(C3−C2) = p3,

6 7. Minsum criteria

and so forth. Adding these equations yields

s1C1 = p1,

s2C1 + s1C2 = p1 + p2,

s3C1 + s2C2 + s1C3 = p1 + p2 + p3,

and so forth.
Suppose S∗ is an optimal schedule. By Lemma 7.1 we may assume C∗1 ≤ C∗2 ≤

·· · ≤ C∗n . For each j, 1 ≤ j ≤ n, let us consider a lower bound on the value of C∗j .
The amount of processing done prior to C∗j is at least p1 + p2 + · · ·+ p j. The fastest
way to perform this processing is to use machines 1,2, . . . , j before C∗1 , machines
1,2, . . . , j− 1 in the interval [C∗1 ,C

∗
2], etc. This yields the system of inequalities of

the form

(s1 + s2 + · · ·+ s j)C∗1 + (s1 + s2 + · · ·+ s j−1)(C∗2 −C∗1) + · · ·+ s1(C∗j −C∗j−1)

≥ p1 + p2 + · · ·+ p j.

Adding these inequalities, we obtain,

s1C∗1 ≥ p1,

s2C∗1 + s1C∗2 ≥ p1 + p2,

s3C∗1+ s2C∗2 + s1C∗3 ≥ p1 + p2 + p3,

and so forth, which gives us

s1C∗1 ≥ s1C1,

s2C∗1 + s1C∗2 ≥ s2C1 + s1C2,

s3C∗1 + s2C∗2 + s1C∗3 ≥ s3C1 + s2C2 + s1C3,

and so forth. Now let us multiply the jth inequality above by a positive value λ j and
add the inequalities, thereby obtaining

(λ1s1 +λ2s2 + · · ·+λnsn)C∗1 +(λ2s1 + · · ·+λnsn−1)C∗2 + · · ·+λns1C∗1
≥ (λ1s1 +λ2s2 + · · ·+λnsn)C1 +(λ2s1 + · · ·+λnsn−1)C2 + · · ·+λns1Cn.

If the λ j values are chosen so that

λns1 = 1,
λn−1s1 +λns2 = 1, (7.2)

λn−2s1 +λn−1s2 +λns3 = 1,

then we will have

∑C∗j ≥∑C j,

7.3. Total weighted completion time, complexity 7

from which it follows that S, the schedule determined by the preemptive SPT rule,
is optimal. Indeed, it follows from the fact that s1 ≥ s2 ≥ ·· · ≥ sm that there is a
solution to (7.2) in nonnegative λ j’s. 2

Exercises
7.5. Devise a simple example to show that an optimal schedule for Q|pmtn|∑C j may
require preemptions.
7.6. Show that the number of preemptions created by applying the preemptive SPT
rule does not exceed (m− 1)(n−m/2). Suggestion: prove that the number of pre-
emptions is equal to the number of active periods − n.
7.7*. Formulate a general class of problem instances for Q|pmtn|∑C j to show that,
for any m and n, as many as (m− 1)(n−m/2) preemptions may be required for
an optimal schedule. Hint: Find a class of problem instances with distinct machine
speeds and job processing requirements for which the only schedule that is optimal
is the one determined by the preemptive SPT rule.
7.8. Generalize Lemma 7.1 and its proof to apply to the ∑w jC j criterion, in the
special case that job processing times and weights are oppositely ordered.
7.9. Show that Lemma 7.1 and its proof remain valid for Q|pmtn, d̄ j|∑C j, provided
processing times and deadlines are similarly ordered.
7.10. Generalize Theorem 7.2 and its proof to apply to the ∑w jC j criterion, in the
special case that job processing times and weights are oppositely ordered.
7.11*. Obtain a closed form expression for C j when the preemptive SPT rule is ap-
plied to an instance of Q|pmtn|∑C j.

7.3. Total weighted completion time, complexity

A summary of the results of the previous two sections is as follows: P||∑C j can be
solved in O(n logn) time by a simple extension of the SPT rule, and since there is
no advantage to preemption, the same rule solves P|pmtn|∑C j as well. Q||∑C j can
be solved in O(n logn) time by matching the processing times p j in nonincreasing
order with the coefficients k/si in nondecreasing order. R||∑C j can be solved in
O(n3) time by a generalization of the coefficient-matching technique. Q|pmtn|∑C j
can be solved in O(n logn+mn) time by the preemptive SPT rule. R|pmtn|∑C j is
NP-hard.

A summary of the complexity status of generalizations of the problems studied in
the previous sections is as follows:

• ∑w jC j criterion – P2||∑w jC j is NP-hard. It can be shown that there is no
advantage to preemption for P|pmtn|∑w jC j. Hence, this NP-hardness re-
sult applies to P2|pmtn|∑w jC j as well. Dynamic programming provides a
pseudopolynomial algorithm for Qm||∑w jC j, as we show below, but this is of
very limited practicality. Results on approximation and branch-and-bound for
P||∑w jC j are scarce.

8 7. Minsum criteria

• Release dates and deadlines – In the absence of preemption, either release
dates or deadlines induce NP-hardness; both 1|r j|∑C j and P2||Cmax have al-
ready been shown to be NP-hard. Also, P2|pmtn,r j|∑C j has been shown to
be NP-hard. The status of P|pmtn, d̄ j|∑C j is unknown. However, there are
polynomial-time algorithms for solving Q|pmtn, d̄ j = d̄|∑C j.

• Precedence constraints – There is very little that can be done with precedence
constraints in polynomial time, since even P2|chains|∑C j is NP-hard. Also,
P|prec, p j = 1|∑C j is NP-hard, but P|outtree, p j = 1|∑C j can be solved in
polynomial time.

Let us now establish the existence of a pseudopolynomial algorithm for the prob-
lem Qm||∑w jC j. The dynamic programming technique we shall describe also yields
similar results for the problems Rm||Cmax, Rm||Lmax, Rm||∑w jU j, and even Rm|d̄ j =
d̄|∑w jTj. What all these problems have in common is that there exists an optimal
schedule in which the sequence of jobs performed by each of the m machines is con-
sistent with a permutation π of the n jobs that can be prescribed a priori. (For ∑w jC j,
π is a ratio order; for Lmax and ∑w jU j, π is an EDD order; for Cmax, π is any order
whatsoever. In the case of ∑w jU j, only the on-time jobs are in a sequence consistent
with π.) Without loss of generality, let π = (1,2, ...,n). Define Fj(t1, . . . , tm) to be the
minimum cost of a schedule for the jobs 1,2, . . . , j, subject to the constraint that the
last job on machine i is completed at time ti, for i = 1,2, ...,m. Then, for fmax criteria
we have

Fj(t1, . . . , tm) = mini=1,...,m max{ f j(ti),Fj−1(t1, . . . , ti− pi j, . . . , tm)},

and for ∑ f j criteria,

Fj(t1, . . . , tm) = mini=1,...,m{ f j(ti)+Fj−1(t1, . . . , ti− pi j, ..., tm)}.

In both cases we have initial conditions

F0(t1, ..., tm) =
{

0, if ti = 0, for i = 1,2, . . . ,m,
+∞, otherwise.

There are O(nCm) values of Fj(t1, . . . , tm) to compute, where C is an upper bound
on the completion time of any job in an optimal schedule. The computation of each
value requires minimization over m alternatives and hence O(m) time. The cost of an
optimal schedule is given by the minimum of the values Fn(t1, . . . , tm), where ti ≤C.
Hence, the cost of an optimal schedule can be computed in O(mnCm) time, which is
pseudopolynomial for fixed m. For variations on this dynamic programming scheme,
see the exercises below.

Exercises
7.7. Devise a simple example to show that an optimal schedule for P2|pmtn,r j|∑C j
may require preemptions.

7.3. Total weighted completion time, complexity 9

7.8. A time bound of O(mnCm) is indicated for the dynamic programming algorithm
presented in this section, where C is an upper bound on the completion time of any
job in an optimal schedule. Show that C≤∑ p j/m+ pmax≤d(n/m)epmax, and hence
the time bound can be expressed as O(n2 pmaxCm).
7.9. Modify the dynamic programming procedure, as necessary, to solve R||∑w jU j.
7.10. Show that in the case of uniform machines and the Cmax, Lmax, ∑w jC j crite-
ria, the dynamic programming running time bound of O(mnCm) can be reduced to
O(mnCm−1). Why can this not be done in the case of the ∑w jU j criterion?
7.11. Consider the problems Qm||∑w jC j, Rm||Cmax, Rm||Lmax, Rm||∑w jU j, and
Rm|d̄ j = d̄|∑w jTj.

(a) For which of these problems is it possible to adapt the dynamic programming
algorithm to deal with nonuniform release dates? Explain.

(b) Same question, with respect to deadlines.

(c) Both release dates and deadlines?

7.12. Recall the recurrence relations for the dynamic programming solution of the
problem 1||∑ f j:

F(S) = min
j∈S
{ f j(p(S))+F(S− j)}. (7.3)

As an alternative to the dynamic programming technique described in this section,
let us consider two ways in which we might adapt the recurrence (7.3) to the solution
of the problem R||∑ f j.

(a) Let Fi(S) denote the minimum cost of a sequence for the subset S on machine
i. Use recurrences (7.3) to compute Fi(S) for each i = 1,2, . . . ,m, and for all
S ⊆ N. Let Gi(S) denote the minimum cost for a schedule of the subset S on
machines 1,2, ..., i, where

Gi(S) = min
S′⊆S
{Fi(S′)+Gi−1(S−S′)}.

Show that the time required to compute Gm(N), the cost of an optimal schedule
for all n jobs on all m machines, is O(m3n).

(b) View the problem of finding an optimal schedule as that of constructing a single
optimal sequence obtained by concatenating the m sequences for the individual
machines. (A similar concatenation of sequences was contemplated for the
solution of Exercise 1.2 in Chapter 1, in which the reader was asked to show
that there are (n+m−1)!/(m−1)! distinct schedules for m parallel machines.)
Define Fi(S, t) to be the minimum cost of a sequence for the subset S in which
the last job in the sequence finishes at time t on machine i. Then we have as
our basic recurrence relations:

Fi(S, t) = min
j∈S
{ f j(t)+Fi(S− j, t− pi j)}.

10 7. Minsum criteria

Indicate how to obtain Fi(S,0) from values for Fi(S, t) and supply appropriate
initial conditions. Show that the time required to compute the cost of an optimal
schedule is O(mnC2n), where C is an upper bound on the completion time of
any job in an optimal schedule. Show that the time bound can be expressed as
O(n2 pmax2n).

(c) For what value of n can you reasonably expect mnC2n to be smaller than m3n?

(d) Describe the adaptations in the procedure necessary to solve 1|r j, d̄ j|∑ f j.

7.4. Other minsum criteria, complexity

Having pretty well disposed of parallel machine problems with ∑C j and ∑w jC j
criteria, let us consider the complexity situation with respect to other minsum criteria.
What we have is largely a litany of bad news:

• ∑U j, ∑w jU j – P2||∑U j is NP-hard, as demonstrated by a simple transfor-
mation from SUBSET SUM. As we have seen in Section 7.3, dynamic pro-
gramming yields a pseudopolynomial algorithm for Rm||∑w jU j. P|pmtn|∑U j
turns out to be NP-hard in the ordinary sense; the proof is of interest be-
cause the problem is one for which preemption is advantageous, and the proof
must take this into account. NP-hardness of the problem in the strong sense
is an open question. It is possible to solve Qm|pmtn|∑w jU j in O(n3mW 2)
time, which is pseudopolynomial, but becomes polynomial, O(n3m), when all
w j = 1.

• ∑Tj, ∑w jTj – Since 1||∑Tj and 1|pmtn|∑Tj are NP-hard, all parallel ma-
chine problems with the ∑Tj criterion are NP-hard as well. Furthermore, since
1||∑w jTj and 1|pmtn|∑w jTj are NP-hard in the strong sense, it is unreason-
able even to hope for pseudopolynomial algorithms for parallel machine ver-
sions of these problems with fixed m. (Recall that in Section 7.3 the best we
could offer was a pseudopolynomial algorithm for the special case of a com-
mon due date, Rm|d j = d|∑w jTj.)

• Unit-time jobs – Here is good news: The problem Q|p j = 1|∑ f j can be solved
in O(n3) time by a simple extension of the matching technique we applied
to solve the problem 1|p j = 1|∑ f j in Section 2.1. Recall that we solved the
single-machine unit-time problem by optimally matching the n given jobs j =
1,2, . . . ,n with the n time slots t = 1,2, . . . ,n. This involved formulating and
solving an assignment or matching problem for an n×n matrix with entries of
the form f j(t). The only new wrinkle required to solve Q|p j = 1|∑ f j in the
same way is in the generation of the values of t for the n time slots to which
the jobs matched.

Because we assume the functions f j are monotone, we know there is an op-
timal schedule with no unforced machine idle time. This means that if ni

7.4. Other minsum criteria, complexity 11

unit-length are processed on machine i, those jobs will be completed at times
t = 1/si,2/si, . . . ,ni/si. More generally, the completion times of the jobs in an
optimal schedule can be assumed to be the n smallest values of t generated by
the algorithm we described in Section 7.1:

for h = 1,2, . . . ,n do
output k/si := delete-min(Q);
insert (k+1)/si into Q;

end

When this loop was used to generate coefficients for the problem Q||∑C j in
Section 7.1, k denoted the kth-last position on machine i, whereas here k de-
notes the kth-earliest time slot and k/si is the completion time of the job pro-
cessed in that slot.

For general f j functions, O(n2) time is required to construct the data for the
matching problem and O(n3) time is required to solve it. However, for certain
scheduling objectives, the matching problem has a trivial solution. For exam-
ple, in the case of Q|p j = 1|∑w jC j, the problem is simply that of matching
the largest weight w j with the smallest completion time, the second-largest w j
with the second-smallest completion time, and so on. Thus the time required
to solve Q|p j = 1|∑w jC j is only O(n logn), the time required to sort the w j
and to generate the values of t. For other examples, see the exercises.

Exercises
7.13. Describe how to solve Q|r j, p j = 1|∑C j in O(n logn) time.
7.14. Describe how to solve Q|p j = 1|∑U j in O(n logn) time.
7.15. Describe how to solve Q|p j = 1| fmax in O(n2) time.

Notes
7.1. Total completion time, nonpreemptive scheduling. The extension of the SPT rule
to P||∑C j is due to Conway, Maxwell, and Miller (1967). The solution of Q||∑C j is
due to Horowitz and Sahni (1976). R||∑C j was formulated as a matching problem
by Horn (1973) and by Bruno, Coffman, and Sethi (1974).

7.2. Total completion time, preemptive scheduling. Lemma 7.1 is due to Lawler (–)];
the surveys by Graham et al. (1979) and Lawler et al. (1993) erroneously attribute
the result to Lawler and Labetoulle (1978). Theorem 7.2 was proved by Gonzalez
(1977)]. Sitters (2005) established NP-hardness of R|pmtn|∑C j by a reduction from
3-dimensional matching.

7.3. Total weighted completion time, complexity. NP-hardness of P2||∑w jC j was
proved by Bruno, Coffman, and Sethi (1974); Lenstra, Rinnooy Kan, and Brucker

12 7. Minsum criteria

(1977) gave a simpler proof. McNaughton (1959) showed that there is no advantage
to preemption in P|pmtn|∑w jC j.

For P||∑w jC j, an obvious idea is to apply list scheduling with the jobs listed
according to nondecreasing ratios p j/w j. Eastman, Even, and Isaacs (1964) inves-
tigated the performance of this ratio rule and gave a lower bound on the optimum
solution value. This lower bound has been the basis for the branch-and-bound algo-
rithms of Elmaghraby and Park (1974), Barnes and Brennan (1977), and Sarin, Ahn,
and Bishop (1988). Kawaguchi and Kyan (1986) refined the analysis of the ratio rule
and gave a performance ratio of (

√
2+1)/2. Sahni (1976) gave algorithms Ak with

running time O(n(n2k)(m−1)) and performance ratio 1+1/k.
Gonzalez (1977) devised a complicated, but polynomial-time, algorithm for

Q|pmtn, d̄ j = d̄|∑C j. As we note in Exercise 7.9, jobs are executed in SPT order
for this problem. This makes it possible to give the problem a linear programming
formulation, using ideas presented in Section 9.2. McCormick and Pinedo (1995)
have investigated an LP formulation in which the objective is to minimize a linear
combination of flow time and makespan, and gave an algorithm that minimizes flow
time subject to a fixed makespan deadline. They showed how to generate the entire
trade-off curve between total completion time and makespan. The schedules gener-
ated put the jobs with the shortest processing times on the fastest machines, except
when it is necessary to fit a block of long jobs under the deadline.

NP-hardness of P2|tree|∑C j and P2|chain|∑C j was proved by Sethi (1977) and
Du, Leung, and Young (1991), respectively. The dynamic programming formulation
for Qm||∑w jC j is due to Rothkopf (1966) and Lawler and Moore (1969).

We note that this chapter was written in 1990. Many subsequent results on ap-
proximating the ∑w jC j objective are not covered.

7.4. Other minsum criteria, complexity. NP-hardness of P|pmtn|∑U j was proved
by Lawler (1983). Also the pseudopolynomial-time algorithm for Qm|pmtn|∑w jU j
is due to Lawler (1979A). Lawler (–) and Dessouky et al. (1990) noticed that
Q|p j = 1|∑ f j and Q|p j = 1| fmax, and variations of these problems, can be formu-
lated and solved as matching problems. Lawler (1976A) proposed an O(n logn)
algorithm for the special case of P|p j = 1|∑w jU j.

