
Contents

9. Minmax criteria with preemption 1
Eugene L. Lawler, Charles U. Martel
9.1. Minimizing makespan 1
9.2. Meeting deadlines 6
9.3. The staircase algorithm for release dates 8
9.4. Network flow computations for release dates and deadlines 14
9.5. Minimizing maximum lateness 15
9.6. Memory constraints 18
9.7. Linear programming formulations for unrelated machines 21

i

9
Minmax criteria with
preemption

Eugene L. Lawler
University of California, Berkeley

Charles U. Martel
University of California, Davis

Good news! This chapter has no NP-hardness results to limit us, and hence no
complicated approximation algorithms to consider. There are only polynomial al-
gorithms to appreciate. In contrast to the nonpreemptive case where even P2||Cmax
is NP-hard, we will be able to solve preemptive settings even for unrelated machines
with release times and due-dates.

We begin with a simple linear time algorithm for P|pmtn|Cmax and then present
the more complex algorithm of Gonzalez and Sahni that solves Q|pmtn|Cmax in es-
sentially O(n) time. We exploit the insights gained from this algorithm to derive
efficient algorithms for Q|pmtn|Lmax, Q|pmtn,r j|Cmax, Q|pmtn,r j|Lmax and also
Q|pmtn|Cmax when machines have memory capacities and jobs have memory re-
quirements. We conclude by showing that the problems R|pmtn|Cmax, R|pmtn|Lmax,
R|pmtn,r j|Cmax and R|pmtn,r j|Lmax can be solved by linear programming.

9.1. Minimizing makespan

McNaughton’s solution of the problem P|pmtn|Cmax is probably the simplest and
earliest instance of an approach that has been successfully applied to other preemp-
tive scheduling problems: First provide an obvious lower bound on the cost of an
optimal solution and then construct a schedule that meets this bound.

1

2 9. Minmax criteria with preemption

Figure 9.1. Schedule obtained by McNaughton’s algorithm.

In the case of P|pmtn|Cmax, let pmax be the largest p j value. We see that Cmax
must be at least

max{pmax,(
n

∑
j=1

p j)/m}. (9.1)

A schedule meeting this bound can be constructed in O(n) time: Schedule the jobs
one at a time, in arbitrary order, filling up the available time on each successive
machine before proceeding to the next, splitting the processing of a job whenever
the above time bound on a given machine is met.

For example, consider a problem with four machines, eight jobs, and processing
times p j = 5, 8, 6, 2, 3, 1, 3, 4 (j = 1, ...,8). Then the time bound given by (9.1)
is max{8,32/4}= 8. A schedule meeting this bound is shown in Figure 9.1.

The number of preemptions occurring in a schedule constructed by McNaughton’s
algorithm is at most m−1, and it is possible to construct a class of problem instances
for which an optimal schedule has at least this many preemptions. It is not hard to
see that the problem of minimizing the number of preemptions is NP-hard. (Observe
that our numerical example can be solved without preemptions.)

9.1.1. Uniform machines: the Gonzalez-Sahni algorithm

In the case of Q|pmtn|Cmax, generalizing the bound (9.1) shows that the length of an
optimal schedule must be at least

max{ max
1≤k≤m−1

k

∑
j=1

p j/
k

∑
i=1

si,
n

∑
j=1

p j/
m

∑
i=1

si}, (9.2)

where p1 ≥ . . .≥ pn and s1 ≥ . . .≥ sm. An algorithm of Gonzalez and Sahni enables
us to construct a schedule meeting this bound. Their algorithm requires only O(n)
time if the jobs are given in order of nonincreasing p j and the machines in order of
nonincreasing si; without this assumption, the running time is O(n+m logm). The

9.1. Minimizing makespan 3

algorithm yields an optimal schedule with at most 2(m−1) preemptions, which is a
tight bound.

To explain the algorithm, we find it convenient to generalize the usual defini-
tion of uniform parallel machines so as to allow the speeds of the machines to be
time varying. Let si(t) denote the speed of machine i at time t and assume that
s1(t)≥ . . .≥ sm(t), for all t. The functions si(t) may be discontinuous, but are inte-
grable. The processing capacity of machine i in the time interval [t, t ′] is then

Si(t, t ′) =
∫ t ′

t
si(u)du. (9.3)

In order for a job to be completed, it is necessary that the sum of the processing
capacities in the time intervals in which the job is processed should equal its pro-
cessing requirement. For example, if job j is processed on machine 1 in the interval
[t1, t ′1] and on machine 2 in the interval [t2, t ′2], then this processing is sufficient to
complete the job if S1(t1, t ′1)+S2(t2, t ′2) = p j.

Let Si, i = 1, . . . ,m, denote the processing capacity of machine i in the interval
[0,T]. By a generalization of (9.2), we see that for there to exist a feasible preemptive
schedule in the interval [0,T] it is necessary that

k

∑
i=1

Si ≥
k

∑
j=1

p j (k = 1, ...,m−1),
m

∑
i=1

Si ≥
n

∑
j=1

p j. (9.4)

Let T be the smallest value for which the inequalities (9.4) are satisfied. We shall
construct a feasible schedule in the interval [0,T] by scheduling the jobs one at a
time, in arbitrary order. For each successive job j, we first find the machine with
largest index k such that its (remaining) processing capacity Sk ≥ p j and then con-
sider three cases:

Case 1. Sk = p j, where k ≤ m−1. In this case we schedule job j to be processed
by machine k for the entire period [0,T]. We then eliminate machine k and job j
from the problem, leaving a problem with m−1 machines and n−1 jobs for which
the inequalities (9.4) are again satisfied.

Case 2. Sk > p j > Sk + 1, where k ≤ m− 1. We assert that there exists a time
t, 0 < t < T , such that p j =

∫ t
0 sk(u)du+

∫ T
t sk+1(u)du. To convince ourselves of

this fact, we need only plot the curves of the continuous functions f (t) =
∫ t

0 sk(u)du,
g(t) =

∫ T
t sk+1(u)du, and f (t)+ g(t). We propose to schedule job j for processing

on machine k in the interval [0, t] and on machine k + 1 in the interval [t,T]. We
then create a composite machine from the remaining available time on machines k
and k+1. The capacity of this composite machine in the interval [0,T] is

Sk +Sk+1− p j =
∫ t

0
sk+1(u)du+

∫ T

t
sk(u)du. (9.5)

We then replace machines k and k+1 with this new composite machine, leaving us
with a problem with m−1 machines and n−1 jobs, for which the inequalities (9.4)
are again satisfied.

4 9. Minmax criteria with preemption

Figure 9.2. Scheduling job 1 using Gonzalez-Sahni algorithm.

Figure 9.3. Final schedule for p j = 28,26,16,12,10.

Case 3. Sm ≥ p j. In this case we schedule job j on machine m, thereby reducing
its capacity to Sm− p j. This leaves a problem with m machines and n− 1 jobs for
which the inequalities (9.4) are again satisfied.

It is now a simple matter to prove, by induction on the number of jobs, that in-
equalities (9.4) imply the existence of a feasible schedule. In other words, satisfac-
tion of inequalities (9.4) is both necessary and sufficient for feasibility. We note that
in fact the above algorithm has the strong property that after scheduling any job j
each of the sums S1, S1 +S2, . . . , S1 + . . .+Sm is as large as possible for any legal
scheduling of job j on the set of machines which exist when j is scheduled.

To illustrate the algorithm, consider a problem with five jobs and processing times
28, 26, 16, 12, 10. The total processing time of all jobs is 92. Thus if we were to
schedule these jobs on machines of speeds 10, 8, 4 and 1, the value of equation
(9.2) is the maximum of 26/10, 54/18, 70/22, 92/23, which is 92/23 = 4. The
scheduling of job 1, using Case 2 of the above algorithm, is shown in Figure 9.2, and
the final schedule is shown in Figure 9.3.

9.1.2. Implementation of the algorithm

The idea of machines with time-varying speeds was introduced only to make it easy
to describe the processing capacities of composite machines. At the beginning of the

9.1. Minimizing makespan 5

computation, before any composite machines are formed, all machines have constant
speeds. In order to compute the minimum value of Cmax by (9.2), we need only to
determine the m largest p j values and to order them. If the p j values are not already
sorted, we can find the m largest in O(n) time by applying a selection algorithm, and
then sort the m largest values in O(m logm) time. Likewise, if the machine speeds
are not already sorted, O(m logm) time suffices to sort the si values.

We propose to maintain the (composite) machine capacities in a linked list
(S1, ...,Sm). This means that each time a job is scheduled, only constant time is
required to revise the list. Suppose, instead of scheduling the jobs in arbitrary order
as described above, we schedule the jobs in nonincreasing order of processing time.
Let k(j) denote the largest value of k such that Sk ≥ p j, with reference to the pro-
cessing capacities existing at the time job j is scheduled. Notice that, in all cases,
k(j) ≥ k(j−1)−1. It follows that, by recording the value of k(j−1) at the end of
iteration j− 1 for use in iteration j, only O(n+m) = O(n) time is required to scan
the list of machine capacities over the course of n iterations. Moreover, after m− 1
jobs have been scheduled, either only one composite machine remains, or Case 3 has
occurred. Once Case 3 occurs, the only machine capacities that must be checked are
the last two capacities in the list.

It follows from the above analysis that O(n+m logm) time suffices for all opera-
tions required by the algorithm, except for the time required to actually schedule the
jobs on the composite machines.

We propose to represent each composite machine by a doubly-linked list of triples
(i,[ti, t ′i]), where each triple gives the index of an elementary machine of speed si and
each time interval [ti, t ′i] indicates a time interval of processing on that machine. By
scanning the linked list for composite machine k+ 1 from the end and k from the
front in parallel (advancing by one interval on each machine until we find a pair of
intervals which overlap), it is easy to determine the time t in Case 2. We can thus
assure that we take O(r+ 1) time to find the intervals used for job j where r is the
number of elementary machine intervals which are completely used up by job j. It
is not hard to verify that at most O(n+m) = O(n) time is required for list scanning
overall by the algorithm. Thus the total time for the algorithm is O(n+m logm). The
number of preemptions introduced is discussed in the exercises.

The Gonzalez-Sahni algorithm is an important building block for algorithms on
uniform machines. In the next four sections we will use this algorithm as a subroutine
to solve more complex uniform machine settings.

Exercises
9.1. Construct a class of P|pmtn|Cmax problem instances for which any optimal
schedule has at least m−1 preemptions.
9.2. Construct a class of Q|pmtn|Cmax problem instances for which any optimal
schedule has at least 2(m−1) preemptions.
9.3. Suppose each machine is available for processing in only certain specified time
intervals. Describe how you would apply the Gonzalez-Sahni algorithm, subject to
constraints of this type.

6 9. Minmax criteria with preemption

9.4. Show that, if jobs are scheduled in arbitary order, the Gonzalez-Sahni algorithm
can be implemented to run in O(m2 +n) time.
9.5. Suppose that k time units of idle time must elapse between the time when a job
is preempted and the time when its processing is resumed on another machine. (a)
Prove that imposing this condition on identical machines increases C∗max by at most
k− 1. (b) Show that, for k = 1, the Cmax problem is solvable in polynomial time
by a simple adaptation of McNaughton’s rule. (For any fixed k ≥ 2, the problem is
NP-hard.)
9.6. Prove a bound on the on the maximum number of (i,[ti, t ′i]) triples which will be
used to represent the composite machines.
9.7. Use the result of problem 6 to show that the algorithm uses at most 2(m− 1)
preemptions.

9.2. Meeting deadlines

The Gonzalez-Sahni algorithm gives us the insight necessary to develop an algo-
rithm for solving the feasibility problem Q|pmtn,d j|−. We shall schedule the jobs
in deadline order, so assume they are indexed with d1 ≤ d2 ≤ . . . ≤ dn. Let S(j−1)

i
denote the capacity of (composite) machine i in the time interval [0,d j−1] after jobs
1,2, . . . j− 1 have been scheduled. The capacities of the composite machines avail-
able for the processing of job j will then be S(j−1)

i + si(d̄ j− d j−1), for i = 1, ...,m.
The Gonzalez-Sahni (G-S) algorithm tells us that whatever the capacities of the com-
posite machines, it is optimal to schedule job j on the composite machines as deter-
mined by Cases 1–3 in the previous section (that is, this schedule maximizes each of
the partial sums of the remaining machine capacities).

Concerning ourselves only with the composite machine capacities, and not with
the actual scheduling of the jobs, the algorithm of Sahni and Cho is as follows:

Algorithm Sahni-Cho
for i = 1, ...,m;

Si := 0;
for j = 1, ...,n;

for i = 1, ...,m;
Si := Si + si (d j−d j−1);

Schedule job j using G-S algorithm. Let k be the largest index with Sk ≥ p j.
Case (Sk = p j): * schedule the job on composite machine k from zero to d j*

for i = k, ..,m−1
Si := Si+1;
Sm := 0;

Case (Sk > p j > Sk+1, and k < m): * schedule on composite machines k,k+1 *
Sk := Sk +Sk+1− p j;
for i = k+1, ...,m−1

Si := Si+1;

9.2. Meeting deadlines 7

Sm := 0;
Case (Sm ≥ p j): * schedule the job on composite machine m *

Sm := Sm− p j;

The Sahni-Cho algorithm can be implemented to run in O(mn + n logn) time.
The schedule it creates has at most O(mn) preemptions, and there are settings which
require Ω(mn) preemptions.

9.2.1. Specialization to identical machines

Interestingly, the specialization of the Sahni-Cho algorithm to P|pmtn,d j|− is a good
deal more efficient.

At each successive deadline d j, each (elementary) machine i has been scheduled
for the continuous processing of jobs in the interval [0,ai]. We will now show that
we can schedule each job using at most one preemption and maintaining the above
property of continuous processing.

Suppose we maintain a nearly balanced tree of pairs (i,ai), sorted by ai value.
Then, in O(logm) time, we will be able to locate the largest ai such that d j−ai ≥ p j.
We now schedule as follows.

If d j−ai = p j, we schedule job j from ai to d j on machine i (as in Case 1 of the
G-S algorithm).

If this is the maximum ai value (thus the ’slowest’ machine), we simply schedule
job j from ai to ai + p j (this corresponds to Case 3).

Otherwise we also find the smallest ar such that d j−ar < p j. Now schedule job
j on machine r from ar to d j and on machine i for the remaining p j− (d j−ar) time
units starting at time ai (this corresponds to Case 2).

In each of the three cases above it is then easy to update ai (and ar in case 2) to
its new value.

Finding ai and ar as well as updating their values can all be done in O(logm)
time, and each job is then scheduled in O(1) time. Hence the overall running time of
the algorithm is O(n logm). If time to sort the d j’s is included, the overall running
time becomes O(n logn).

9.2.2. Minimization of Lmax

We can apply Megiddo’s method to transform the Sahni-Cho feasibility algorithms to
algorithms for solving P|pmtn|Lmax and Q|pmtn|Lmax. What is needed is the smallest
value of λ such that the induced deadlines d j = d j +λ admit a feasible schedule. The
Sahni-Cho feasibility algorithm has n iterations. In the case of uniform machines, at
each iteration a bisection search enables us to find the desired index k with O(logm)
comparisons of p j against the machine capacities, which are linear functions of λ.
It follows that Lmax can be minimized with O(n logm) calls on the feasiblility algo-
rithm, or O(mn2 logm) time overall. In the case of identical machines, the feasibility
algorithm also requires O(logm) comparisons at each iteration. The result of each

8 9. Minmax criteria with preemption

comparison can be resolved by a call to the feasibility algorithm. Hence Lmax can
be minimized with O(n logm) calls on the feasibility algorithm, or O(n2log2m) time
overall.

The problems P|pmtn|Lmax and Q|pmtn|Lmax are equivalent, by symmetry of
release dates and due dates, to the problem P|pmtn,r j|Cmax and Q|pmtn,r j|Cmax.
Hence the algorithms described above solve these problems as well.

Exercises
9.8. Describe how to minimize weighted maximum lateness for identical and uni-
form machines. (Note: The relative order of the induced deadlines d j = d j +λ/w j
may change with λ.)
9.9. Give a family of Q|pmtn,d j|− problems which require Ω(mn) preemptions.

9.3. The staircase algorithm for release dates

We shall now describe an algorithm for solving the problem Q|pmtn,r j|Cmax. For
reasons that will become apparent, we refer to this as the “staircase” algorithm. The
details of the algorithm and its implementation are somewhat involved. However,
the principal idea behind the algorithm is actually quite simple.

Assume the jobs are numbered in release date order, r1 ≤ . . . ≤ rn. The algo-
rithm creates a schedule by moving from one release date to the next, creating a
subschedule for each successive interval [rk,rk+1], k = 1,2, . . .n− 1. At rk, k jobs
have been released, and their remaining processing requirements in sorted order are
p(k)1 ≥ . . . ≥ p(k)k ≥ 0. (Included among these processing requirements is pk, since

job k is released at rk; no correspondence between the indexing of the the p(k)j ’s and
the release dates is intended.) The algorithm has the property that the remaining pro-
cessing requirements are as evenly distributed as possible. More specifically, there is
no way that the jobs could have been processed before rk that would have yielded a
smaller value for any of the partial sums p(k)1 , p(k)1 + p(k)2 , . . ., p(k)1 + p(k)2 + . . .+ p(k)k .
At rk, the algorithm utilizes the capacities of the m machines in the interval [rk,rk+1]
so as to minimize each and every one of the new partial sums p(k+1)

1 , p(k+1)
1 + p(k+1)

2 ,
. . ., p(k+1)

1 + p(k+1)
2 + . . . p(k+1)

k , where p(k+1)
1 ≥ . . . ≥ p(k+1)

k ≥ 0. This means that

when rn is reached, the remaining processing requirements p(n)j , j = 1, ...,n, are such
that the length of the final interval [rn,Cmax] is minimized. (The length of this fi-
nal interval is determined by the smallest value of T such that inequalities (9.4) are
satisfied, with respect to the remaining processing requirements.)

The reader may wish to reflect on a certain duality between the staircase algorithm
and the Sahni-Cho algorithm. As we have described, the staircase algorithm sched-
ules several jobs at each iteration in such a way as to minimize each of the partial
sums of the processing requirements remaining for the next iteration. By contrast,
the Sahni-Cho algorithm schedules a single job at each iteration in such a way as to

9.3. The staircase algorithm for release dates 9

Figure 9.4. Staircase of remaining processing times.

maximize each of the partial sums of the machine capacities remaining for the next
iteration.

The staircase algorithm has the desirable property that it is nearly on-line. By this
we mean that at each successive release date rk the algorithm does not require any
knowledge of the jobs that are to be released at future times; all it requires is knowl-
edge of the next release date rk+1. (If it did not require knowledge of rk+1, it would be
truly on-line.) By contrast, the Sahni-Cho algorithm is off-line. When the Sahni-Cho
algorithm is applied to an instance of the feasibility problem Q|pmtn,r j,d j = d|−
(by applying it to a symmetrically equivalent instance of Q|pmtn,d j|−), the algo-
rithm iterates from the latest release date backward.

9.3.1. Constructing the staircase

Let us consider how the algorithm determines the amount of processing to perform
on each job in the interval [rk,rk+1]. For ease of notation, let us drop the superscripts
and denote p(k)j by p j and let q j denote the remaining processing time of the job
associated with p j after processing in this interval. We also let t = rk+1− rk. For
purposes of exposition, we assume for the time being that, if m < k, machines m+
1, . . . ,k, with sm+1 = . . .= sk = 0, are added to the model.

The p j can be viewed as defining a staircase pattern as shown in Figure 9.4. The
q j will chosen in such a way that they form a similar pattern. Such a staircase can
be characterized by grouping the remaining processing times into blocks of equal
values. If there are u different values remaining, we let q(1) denote the maximum
remaining value, q(2) the second largest remaining value, ..., and q(u) the smallest
remaining value (with q(u) ≥ 0). We then let h(i) represent the height of the first i
blocks. Thus h(1) is the number of jobs with q(1) units of processing remaining, and
in general h(i) is the number of jobs with q(i) or more units of processing remaining.
In Figure 9.4, q(1) = 6, q(2) = 4, q(3) = 2, h(1) = 2, h(2) = 3, h(3) = 5. The
staircase can be characterized by ((h(1),q(1)), ...,(h(u),q(u)), where q j = q(i), for

10 9. Minmax criteria with preemption

each job j, h(i−1)+1≤ j≤ h(i). (Here i = 1, ...,u; h(0) = 0, h(u) = k.) We always
have that

q(i)> q(i+1), i = 1, ...,u−1. (9.6)

The staircase is constructed in such a way that for each i, the capacities of ma-
chines h(i− 1)+ 1, . . . ,h(i) are fully utilized to decrease ph(i−1)+1, . . . , ph(i) to q(i).
A second condition for feasibility is therefore that

l

∑
j=h(i−1)+1

q j = (l−h(i−1))q(i)≥
l

∑
j=h(i−1)+1

p j− t
l

∑
j=h(i−1)+1

s j (9.7)

for l = h(i−1)+1, . . . ,h(i), i = 1, ...,u.
The corners of the staircase, except possibly the last one, correspond to strict

equalities:

h(i)

∑
j=h(i−1)+1

q j = (h(i)−h(i−1))q(i) =
h(i)

∑
j=h(i−1)+1

p j− t
h(i)

∑
j=h(i−1)+1

s j (9.8)

for i = 1, ...,u−1.
A third condition for feasibility is of course that

0≤ q j ≤ p j, j = 1,2, ...,k. (9.9)

We tentatively construct the first step of the staircase by setting h(1) := 1, q(1) :=
p1− ts1. Generally, after constructing i tentative steps (h(1),q(1)), ...,(h(i),q(i)),
the tentative steps satisfy the feasibility conditions (9.6–9.9), except that possibly
q(i) < 0, in violation of (9.9). We construct an (i+ 1)st tentative step by setting
h(i+1) := h(i)+1, q(i+1) := ph(i+1)− tsh(i+1). If q(i)> q(i+1) and q(i)≥ 0, we
are finished with the construction of the new tentative step.

Suppose now that q(i) < 0, in violation of condition (9.9), or q(i) ≤ q(i+ 1), in
violation of condition (9.6). In the first case, there is unused capacity on machines
h(i− 1)+ 1, . . .h(i); in both cases, some of the capacity of these machines must be
used to process job h(i)+1, in order to satisfy conditions (9.6), (9.8) and (9.9). We
therefore reconstruct the ith step so as to include job h(i) + 1 in that step, setting
h(i) := h(i)+1, and recalculating q(i) according to (9.8):

q(i) := (
h(i)

∑
j=h(i−1)+1

p j− t
h(i)

∑
j=h(i−1)+1

s j)/(h(i)−h(i−1)). (9.10)

Using the old q(i),q(i+1) values, the formula for the total remaining processing of
the jobs in the new combined step is (h(i)−h(i−1)−1)q(i)+ ph(i)−tsh(i) = (h(i)−
h(i−1)−1)q(i)+q(i+1). Thus we can compute the new value of q(i) as

q(i) := [(h(i)−h(i−1)−1)q(i)+q(i+1)]/(h(i)−h(i−1). (9.11)

9.3. The staircase algorithm for release dates 11

As a result, it may now be that q(i−1)≤ q(i); q(i−1)< 0 cannot occur. In this case,
we reconstruct the (i− 1)st step so as to include the ith step: h(i− 1) is set to h(i)
and q(i− 1) is recalculated using an analagous approach to (9.11). We continue in
this way until condition (9.6) is satisfied. The adjusted staircase includes one more
job and may have fewer steps than before.

Pseudocode for the staircase subalgorithm is as follows, where the interval length
t and processing times p1 ≥ . . . ≥ pk which remain at the start of interval k are the
inputs, and the resulting q(i),h(i) values are the outputs:

h(0) := 0;
q(0) := ∞

i := 0;
for j = 1, ..,k

i := i+1;
h(i) := j;
q(i) := p j− tsh(i);
while (q(i−1)≤ q(i) or q(i−1)< 0)

q(i−1) := [(h(i−1)−h(i−2))q(i−1)+(h(i)−h(i− i))q(i)]/
[h(i)−h(i−2)];
h(i−1) := h(i);
i := i−1;

return q(1), . . . ,q(i);h(1), . . . ,h(i);

We have to verify that the resulting staircase (h(1),q(1)), ...,(h(k),q(k)) and the
corresponding remaining processing requirements q(1), ...,q(u) indeed satisfy the
the feasibility conditions (9.6–9.9). For (9.6) and (9.8) this is obvious. To see that
(9.7) must be true, note that each q(i) is initially defined by an equality constraint
and can only increase thereafter. To verify condition (9.9), it suffices to show that
q(i)≤ ph(i), since if the new processing amount for jobs in the ith step (q(i)) is equal
to or less than the smallest intial processing amount (ph(i)), then the condition holds
for those jobs in the step which started with more processing. We initially set q(i)
to ph(i)− tsh(i). When two steps are combined, the current value h(i) becomes the
height of the new step i− 1, and the new value of q(i− 1) is at most the old value
of q(i). Thus after combining the two steps, the new value q(i− 1) is still at most
ph(i−1), which implies the desired result.

9.3.2. Complexity analysis

We now analyze the running time of the subalgorithm. The number of step con-
structions (first three lines of for loop) is exactly k. Each iteration of the while loop
combines two steps, so this is done at most k− 1 times in total. Thus the entire
staircase function runs in O(k) time. This presupposes that the given p j values are
ordered; but since the relative order of the remaining processing requirements does
not change, we can maintain an ordered list of these values and insert the process-
ing requirement pk of job k that becomes available at rk in O(k) time. Hence the

12 9. Minmax criteria with preemption

subalgorithm determines the values q(i) for each interval in O(k) time. As has been
indicated above, the Gonzalez-Sahni algorithm can be applied to construct an actual
schedule for each interval in O(k) time as well (since the machines and processing
times are assumed to have been sorted). We thus have arrived at a nearly on-line
algorithm that requires O(n2) time overall.

9.3.3. Correctness of the algorithm

We note first that not only does the relative order of the remaining processing re-
quirements remain invariant, but also the following stronger property holds: as soon
as two remaining processing requirements become equal, they remain equal. To see
this, suppose that p j = p j+1 at time rk, and they are in different steps, so, let h(i) = j.
We set q(i+1) = p j+1− ts j+1. But q(i)≤ p j− ts j ≤ p j− ts j+1 = q(i+1), and we
have to reconstruct the i-th step so as to include job j+1 as well.

This leads us to define the rank of an available job j at time rk as the value h(i)
for which h(i− 1)+ 1 ≤ j ≤ h(i), where these are the final h(i) values computed
for the interval [rk,rk+1]. The rank of a job at time rn is defined analogously as its
step height that would be found if the subalgorithm were to be applied in the interval
[rn,C∗max]. A job will be called critical if its rank is at most m−1 and it hasn’t been
completed. Otherwise the job is noncritical. The rank of a job cannot decrease; in
particular, once a job becomes noncritical, it never becomes critical again. It follows
from (9.8) that in any interval the fastest h(i) machines are exclusively processing
the longest h(i) critical jobs. A critical job is processed continuously from its release
date until it either is completed or becomes noncritical.

These observations suggest the following correctness proof for the algorithm.
First, suppose that the schedule ends at C∗max with the simultaneous completion of
l critical jobs (l < m). At any time when l′ of these jobs are available, they are pro-
cessed by the fastest l′ machines. Thus the maximum possible total processing has
been devoted to these l critical jobs prior to rn, so, the schedule is clearly optimal.

Alternatively, suppose that the schedule ends with the simultaneous completion
of m noncritical jobs. If there is no idle time in the schedule it is clearly optimal.
Otherwise, let rk be the last release date such that there is idle time in [rk−1,rk] on
some machine. All the jobs that are available but noncritical at time rk−1 will thus be
completed by time rk. We conclude that the portion of the schedule for the remaining
jobs has the following structure. Before rk, the available critical jobs are processed
by the fastest machines. Between rk and C∗max, there is no idle time. It follows that
the schedule is optimal for the jobs under consideration and thus that C∗max is the
minimum time to complete all the jobs.

9.3.4. A more efficient off-line implementation

Let us use the terminology of the prior section to describe a more efficient implemen-
tation of the staircase subalgorithm. We will reduce the running time by dealing more

9.3. The staircase algorithm for release dates 13

carefully with the noncritical jobs, circumventing the need to introduce machines of
speed zero.

The noncritical jobs of lowest rank, i.e., jobs h(i− 1)+ 1, . . .h(i), where h(i−
1)+ 1 ≤ m ≤ h(i), will be called active. In the interval [rk,rk+1], their remaining
processing requirements are reduced by machines h(i− 1)+ 1, . . .m to a common
amount q(i). The remaining processing requirements are not reduced at all, since
they are assigned to dummy machines of speed zero.

As a first refinement, the subalgorithm does not have to deal with the active non-
critical jobs individually, since their remaining processing requirements will remain
equal throughout. They can easily be handled simultaneously by straightforward
generalizations of (9.10) and (9.11). As a second refinement, the subalgorithm can
be terminated as soon as either h(i) = k or h(i)≥ m and q(i)> ph(i)+1.

Instead of maintaining an ordered list of all remaining processing requirements,
we have only to do so for the largest m− 1 of them. We simply record the number
of active noncritical jobs, their common remaining processing requirement, and the
lowest index of any of them. Finally, we maintain a priority queue for the remaining
requirements of the inactive noncritical jobs.

At each release date the processing requirement of any job that becomes inactive
is, depending on its size, inserted either in the ordered list in O(m) time or in the
priority queue in O(logn) time. The staircase computations for the longest m− 1
jobs and the active noncritical jobs require O(m) time in each interval and O(mn)
time overall. The queue operations require O(logn) time when a job is inserted
or deleted and O(n logn) time overall, since once an inactive job becomes active
and is withdrawn from the queue, it remains active throughout. Hence succssive
applications of the modified subalgorithm determine the value C∗max in O(n logn+
mn) time. As has been indicated above, the Sahni-Cho algorithm can be applied
to construct an actual schedule in the interval [r1,C∗max] in O(n logn+mn) time as
well. We thus have arrived at an off-line algorithm that requires O(n logn+mn) time
overall.

Exercises
9.10. Devise an example to show that there can be no on-line algorithm for
Q|pmtn,r j|Cmax.
9.11. Suppose m uniform machines are capable of machine sharing. By this we
mean that the processing capacity of a given subset of machines can be equally
shared by a given subset of jobs (with processing occurring in infinitesimally small
time slices, and preemption infinitely often). Show that under the assumption of ma-
chine sharing, an on-line algorithm does exist for Q|pmtn,r j|Cmax. Describe how
this algorithm is related to the staircase algorithm.

14 9. Minmax criteria with preemption

9.4. Network flow computations for release dates and deadlines

Let us begin with the feasibility problem P|pmtn,r j, d̄ j|−. Let {e1, ...,e2n}, e1 ≤
. . . ≤ e2n, be the ordered collection of release dates r j and deadlines d̄ j. If a release
date and a deadline are equal, the smaller index is assigned to the release date. Let
Ek denote the time interval [ek,ek+1], for k = 1,2, ...,2n−1.

We shall construct a flow network with job nodes j = 1, ..,n, interval nodes
Ek, k = 1, ...,2n− 1, a source node s and a sink node t. There is an arc (j,k) of
capacity ek+1− ek from job node j to each of the interval nodes Ek such that r j ≤ ek
and d̄ j ≤ ek+1. In addition there is an arc (s, j) of capacity p j from the source node
to each job node j and an arc (k, t) of capacity m(ek+1− ek) from each interval node
to the sink node. We assert that there exists a feasible preemptive schedule for the
given instance of the feasibility problem if and only if the flow network admits a flow
which saturates all the arcs out of s (and thus the total flow equals the sum of the p j
values).

The reasoning is very simple. The flow value f (j,k) for the arc (j,k) represents
the amount of processing of job j that is done in interval Ek. The capacities ek+1−ek
assigned to the arcs (j,k) assure that no job is scheduled for more than the length of
Ek, and the capacity m(ek+1− ek) of the arc (k, t) assures that the total processing
done by all jobs in interval Ek can be completed. Thus, the amount of processing
that is done on the various jobs in the interval Ek satisfies the conditions (9.1).

If the network flow computation indicates that there exists a feasible schedule,
McNaughton’s algorithm can be applied to the arc flow values f (j,k) to construct
a feasible subschedule within a given time interval Ek in O(n) time. We thus can
construct a feasible schedule in O(p(n)+ n2) time, where p(n) is the time required
for the max flow computation.

Since any legal schedule can be converted to a feasible flow which saturates all
arcs out of s, if the maximum flow is less than the sum of the p j values, we know
that no legal schedule exists.

9.4.1. Q|pmtn,r j, d̄ j|−
It requires a bit of cleverness to construct a flow network for the problem
Q|pmtn,r j, d̄ j|−. In order for conditions (9.4) to be satisfied for the interval Ek, we
must restrict the total processing done on any single job to s1(ek+1−ek), on any pair
of jobs to (s1 + s2)(ek+1− ek), . . ., on any m−1 jobs to (s1 + ...+ sm−1)(ek+1− ek),
and on all jobs to (s1 + ...+ sm)(ek+1− ek). What we shall do is modify the network
of the prior subsection by replacing the node for Ek by m nodes (i,Ek), i = 1, . . .m.

The capacity of each arc (j,(i,Ek)) will be (si−si+1)(ek+1−ek), and the capacity
of each arc ((i,Ek), t) will be i(si− si+1)(ek+1− ek). (Here define sm+1 to be zero.)

We validate the network construction as follows. Consider the maximum amount
of flow there can be from any set of u job nodes to the m nodes associated with
interval Ek. We will now show that this total flow is at most (s1+ ...+su)(ek+1−ek),
which is the maximum amount of processing we can do on u jobs in this interval.

9.5. Minimizing maximum lateness 15

The maximum flow that can pass through the node (i,Ek) is Min {u, i}(ek+1−ek).
Hence the total flow that can pass through all the nodes (i,Ek) to t is

(s1− s2)(ek+1− ek)
+ 2(s2− s3)(ek+1− ek)

...
+ (u−1)(su−1− su)(ek+1− ek)
+ u(su− su+1)(ek+1− ek)

...
+ u(sm)(ek+1− ek)
= (s1 + ...+ su)(ek+1− ek),

giving us the desired result.
Note that the network constructed for the Q|pmtn,r j, d̄ j|− problem has O(mn)

nodes, hence the running time of the feasibility computation is O(p(mn)). However,
the special structure of the flow network gives faster time bounds then for general
networks of this size (this is partly explored in the exercises below).

Exercises
9.12. Show that the flow network for identical machines is actually a special case of
the flow network for uniform machines. (That is, when all speeds are equal and arcs
of zero capacity are removed, the flow network for identical machines is obtained.)
9.13. Show that only O(tn) nodes are needed for the uniform machine model when
there are only t machine speeds.
9.14. Describe how to construct a network flow model for the case of 2 uniform
machines, with only one node for each time interval Ek.
9.15. Suppose each job had a list of time intervals during which it could be pro-
cessed. Describe how to modify the network flow formulation to deal with this set-
ting.

9.5. Minimizing maximum lateness

We now apply the results of the previous section to solve the problems P|pmtn,r j|Lmax
and Q|pmtn,r j|Lmax. The network flow model enables us to test any given value of
Lmax for feasibility: for any given trial value λ, induce deadlines d̄ j = d j + λ and
perform a max-flow computation to test for the existence of a feasible schedule with
respect to the induced deadlines. It follows that we can minimize Lmax by finding the
smallest value of λ for which there is a feasible schedule.

Observe that the relative ordering of release dates and induced deadlines changes
with λ, hence the topology of the flow network also changes with λ. There are
at most n2 critical values of λ that are of particular concern, namely those values
such that d j +λ = rk, for some j and k. The node-arc structure of the flow network
remains invariant for all values of λ between two successive critical values; only the
arc capacities change. Our first task is to compute the n2 critical values of λ and to

16 9. Minmax criteria with preemption

carry out a bisection search over them, finding the largest infeasible critical value
λ0. This can be done in O(n2) time, plus the time required for O(logn) max-flow
computations.

Having found λ0, we are able to fix the topology of the flow network we shall be
dealing with. The task that remains is finding the smallest increment δ such that the
arc capacities induced for λ0+δ permit a flow value of P=∑

n
j=1 p j. (In a degenerate

case, it may be that λ0 +δ equals the critical value of λ next larger than λ0, but this
causes no problem.) We shall first consider how to minimize δ in the case of identical
machines.

Let Ek, k = 1, ...,2n−1, be the time intervals induced by λ0. Each interval Ek =
[ek,ek+1] is of one of four types, depending upon whether ek and ek+1 are release
dates or induced deadlines; we shall refer to these four types as [r,r], [r,d], [d,r], and
[d,d] intervals. When the trial value of Lmax is increased from λ0 to λ0 + δ, the
length of an [r,r] or [d,d] interval remains unchanged, the length of an [r,d] interval
increases by δ, and the length of a [d,r] interval decreases by δ. This means that
when the arc capacities are expressed as a function of the parameter delta, we have
the following results. Each arc (j,Ek) has a capacity

(ek+1− ek +∆) (9.12)

and each arc (Ek, t) has a capacity

m(ek+1− ek +∆), (9.13)

where ∆ = 0 if Ek is an [r,r] or [d,d] interval, ∆ = δ if Ek is an [r,d] interval, and
∆ =−δ if Ek is a [d,r] interval. All arcs (s, j) have capacity p j.

Note that each arc ei in the flow network induced by λ0 +δ has a capacity of the
form ci +µiδ where ci is a constant and µi is a multiplier of value 0, 1, −1, or m.

9.5.1. First approach: apply Megiddo’s method

Because each arc capacity is a linear function of δ, Megiddo’s method can be ap-
plied to find the minimum value of δ such that a flow of value P can be achieved.
A straightforward application of the method yields a solution to P|pmtn,r j|Lmax in
O(p2(n)) time, where p(n) is the running time of the max-flow algorithm chosen.

9.5.2. Second approach: iteration on trial values

The capacity of each (s, t) cut in the flow network is also a linear function of δ.
Consider the capacity of a minimum cut. Each of the 2n− 1 nodes Ek is either on
the source side or on the sink side of the cut. If Ek is on the source side, arc (Ek, t)
contributes its capacity to the capacity of the cut as determined by (9.13). If Ek is on
the sink side, then at most m arcs (j,Ek) contribute their capacities to the capacity of
the cut, where these capacities are determined by (9.12). (At most m arcs (j,Ek) can
contribute their capacities to the capacity of a minimum cut, else the total capacity

9.5. Minimizing maximum lateness 17

of these arcs would exceed that of the arc (Ek, t).) Thus in the flow network with
arc capacities induced by λ0, each minimum cut C′ has a capacity as a function of
δ, which is P′+ µδ, where P′ is an integer constant less than P and µ is an integer
multiplier obtained by summing the µi values associated with the arcs in C′. Thus µ
is no greater than m(2n− 1). It follows that in order for the capacity of any given
minimum cut C′ to be P, we must have δ = (P−P′)/µ.

An iterative procedure for finding the optimal value of λ is as follows. Find a
minimum cut C0, with capacity P0 < P, in the flow network with arc capacities in-
duced by λ0. Set λ1 = λ0 +(P−P0)/µ0. where µ0 is the multiplier for C0. Find a
minimum cut C1, with capacity P1 > P0 in the network with arc capacities induced
by λ1. If P1 = P, terminate. Otherwise iterate, setting λi = λi−1 +(P−Pi−1)/µi−1,
until a minimum cut Ci is found with Pi = P.

Observe that in the network with arc capacities induced by λi, the capacities of
all cuts with multipliers greater than or equal to µi−1 are at least P. Hence at each
iteration i, except possibly the last, µi > µi−1. Since there are at most m(2n− 1)
values for the multipliers, the procedure must terminate in O(mn) iterations. We
now have achieved a time bound of O(mnp(n)) for finding the optimal value of λ.

9.5.3. Third approach: bisection search on δ

The desired value of δ is (P−P′)/µ, for some cut C′ with capacity P′+ µδ. If the
release times and due-dates are integers, P′ is a positive integer no greater than P and
µ is a positive integer no greater than m(2n− 1). It follows that the optimum value
of δ can be found by carrying out a bisection search over O(mnP) ratios, which can
be accomplished with O(logn+ log pmax) calls to the max-flow algorithm, yielding
a time bound of O(p(n)(logn+ log pmax)).

9.5.4. Uniform machines

Now let us extend the above results to the case of uniform machines. Instead of the
capacities (9.12), we have for each arc (j,(i,Ek)):

(si− si+1)(ek+1− ek), if Ek is an [r,r] or [d,d] interval,
(si− si+1)(ek+1− ek +δ), if Ek is an [r,d] interval,
(si− si+1)(ek+1− ek−δ), if Ek is a [d,r] interval.

And instead of (9.13) we have for each arc ((i,Ek), t):

i(si− si+1)(ek+1− ek), if Ek is an [r,r] or [d,d] interval,
i(si− si+1)(ek+1− ek +δ), if Ek is an [r,d] interval,
i(si− s1+1)(ek+1− ek−δ), if Ek is a [d,r] interval.

Note that each arc ei in the flow network induced by λ0 +δ still has a capacity of the
form ci+µiδ where ci is a constant but now the multiplier µi is of the form i(si−si+1)
where i is an integer in the range −m, . . . ,−1,0,1, . . . ,m.

The capacity of each (s, t) cut C′ is a linear function of the form P′+ µδ. For a

18 9. Minmax criteria with preemption

min cut, µ is no greater than (s1 + s2 + ...+ sm)n since we get at most this value by
putting all of the (i,Ek)) nodes on the s side of the cut.

A straightforward application of Megiddo’s method yields a running time of
O(p2(mn)). In order to apply the other two methods, we must assume that the
machine speeds si are integers. The iterative method then has a running time of
O((s1 + ...+ sm)np(mn)), and the bisection search method has a running time of
O(p(mn)(logn+ logs1 + log pmax).

Exercises
9.16. Extend the ideas of this section to solve the weighted maximum lateness prob-
lems P|pmtn,r j|wLmax and Q|pmtn,r j|wLmax. (Note: Each trial value of λ in this
setting induces deadlines d j = d j +λ/w j.)
9.17. The bound of m(2n− 1) on µ for a min-cut in the indentical machine setting
can be improved. Show that µ < mn.

9.6. Memory constraints

We now consider a variation of Q|pmtn|Cmax where we have the additional con-
straint that each machine i has a memory capacity ci, and each job j has a memory
requirement q j. A job j can be executed on machine i if and only if

ci ≥ qi (9.14)

This is a special case of R|pmtn|Cmax, which will be discussed in the next section.
Our approach will be to first describe a method for machines of identical speeds,

then generalize this to a feasibility testing algorithm for uniform machines. Finally,
we use search techniques to find the minimum possible completion time.

We assume that the ci values have been sorted so that c1 ≥ . . .≥ cm. We can then
partition the jobs into sets Gi where Gi = {J j |ci ≥ q j > ci+1}, 1 ≤ i ≤ m− 1, and
Gm = {J j |cm ≥ q j}. Thus Gi is the set of all jobs which can be run on machine i but
not on machine i+1. We also define Fi = ∪i

j=1G j to be the set of all jobs that must
be run on machines 1 to i, and Xi to be the total processing time of all jobs in Fi.

9.6.1. Identical machines

It has been shown that, when all machines have the same speed (thus speed 1), the
length of an optimal schedule is:

C∗max = max{ max
1≤i≤m

Xi

i
, pmax} (9.15)

The algorithm is quite simple: we form the sets Gi and Fi and use this to compute
the value of C∗max using (9.15). We then schedule the jobs in each set Gi using Mc-
Naughton’s rule.

9.6. Memory constraints 19

We can form the Gi sets on O(n logm) time and all other steps take O(n) time,
so the total time is O(n logm). Just as in McNaughton’s algorithm there are at most
m−1 preemptions.

9.6.2. Uniform machines

For this setting we know of no closed form expression for C∗max. Thus we start by
considering the case where all jobs have a common deadline D and try to find a
schedule which completes all jobs by time D. At a high level our algorithm has the
same structure as for identical machines: form the sets Gi and then schedule the jobs
in the sets G1,G2, . . .Gm. The main difference is that each set is now scheduled using
the Gonzalez-Sahni algorithm of Section 9.1.1. We will also have to be more careful
about adding new machines.

Intuitively our goal is to schedule each set Gi while leaving as much time on
the fast machines as possible for future jobs. Fortunately that is exactly what the
Gonzalez-Sahni algorithm does. Recall also that the Gonzalez-Sahni algorithm is set
up to work on a composite machine system where each machine has a time varying
speed.

Recall that our composite machines consist of elementary machine intervals which
are just time intervals on our original machines. For example, if D = 4, composite
machine 1 might have speed 5 in [0,2], speed 10 in (2,3], and speed 20 in (3,4]. Note
that the speeds increase as time increases. As we schedule jobs and add machines, we
will maintain the following properties: (i) within each composite machine speeds are
nondecreasing as time increases; (ii) no speed in machine i is greater than the slowest
speed in machine i−1. We can view this as lining up the composite machines from
left to right starting with the last one on the left. As we go from left to right, the
speeds of the elementary machine intervals are nondecreasing. We can view this as a
sort of composite supermachine of length mD (with the early part possibly of speed
zero). Let R(T) denote the total processing capacity of this supermachine using the
last T time units (e.g., R(D) is the capacity of composite machine 1, and R(1.5D) is
the total capacity of machine 1 and the fastest D/2 time units of machine 2).

We now consider how to update a composite machine system. After scheduling
a set of jobs Gi−1 we are left with a composite machine system CM which has the
remaining processing capacity of machines 1,2, ..., i− 1. Before scheduling set Gi
we need to add machine i to CM to create a new composite machine system CM’.
To add machine i, we splice it into CM as follows. First find the largest speed sr in
CM such that sr < si; note sr could be 0. Let k be the smallest index of a composite
machine which has an elementary machine interval of speed sr and let [t1, t2] be the
last elementary machine interval of speed sr on composite machine k. We change
composite machine k to have speed si in the interval [0, t2], and we create a new
composite machine (k+1) which has speed s1 in the interval (t2,D] and inherits the
elementary machine intervals which were on machine k in the interval [0, t2]. The
speeds of the other composite machines are unchanged, but those with index larger
than k all increase their index by 1. This maintains the property that speeds increase

20 9. Minmax criteria with preemption

as we go later in time or to earlier indexed machines.
Let CMi be the composite machine system after our algorithm schedules the jobs

in Gi. We define Ri(T) as the total processing capacity using the fastest T time units
of processing in CMi. The correctness of our feasibility algorithm follows from these
facts:

(i) Consider any alternate schedule S for the jobs in Fi; let R′(T) represent the total
processing capacity of the T fastest units of time which remains idle on machines
1,2, ..., i in S. Then Ri(T)≥ R′(T) for 0≤ T ≤ mD.

(ii) After splicing in machine i+ 1 as described above to get a new composite
machine system, the R function for this also dominates any alternate schedule’s re-
maining processing capacity.

These facts are proved by showing that, if these properties hold before a set of
jobs is scheduled or a machine inserted, they must also hold afterwards.

Theorem 9.1. The feasibility algorithm will schedule all jobs by time D whenever
such a schedule is possible.

Proof. We will be able to schedule each set Gi as long as CMi satisfies the inequal-
ities of (9.4) for the Gonzalez-Sahni algorithm. If we ever reach a point where Gi
cannot be scheduled, the fact that each of the sums S1,S1 + S2, . . . ,S1 + . . .Sm is as
large as possible (by facts (i) and (ii) above), shows that no schedule can complete
all the jobs in Fi.

We now analyze the complexity of our algorithm. The sets Gi can be constructed
easily in O(n logm) time. To analyze the time for the Gonzalez-Sahni algorithm,
note that each time we splice in a new machine we add at most two elementary
machine intervals to our composite machine system. Since scheduling a job never
creates additional elementary machine intervals, the total number of elementary ma-
chine intervals is at most 2m. Each job can be scheduled using O(logm) time to find
the correct composite machine(s) plus O(l) time, where l is the number of elemen-
tary machine intervals used up by this job. Thus the total time to schedule all jobs
is O(n logm). The only remaining issue is adding a new machine. We can easily
add a new machine in O(m) time by simply scanning the doubly-linked list of ele-
mentary machine intervals which represents the appropriate composite machine. A
more complex approach stores the speeds of the elementary machine intervals in a
balanced binary search tree. This allows us to insert a new machine in O(logm) time.
Thus the overall running time is O(n logm).

The feasibility algorithm lets us test any common deadline D. To find Cmax, the
smallest feasible D, we can use Megiddo’s method using our feasibility routine as a
subroutine. A simple application would result in a running time of O(n2log2m).

Exercises
9.18. Our description of the feasibility algorithm implicitly assumed that the mem-
ory sizes ci were all distinct. Describe how to modify the algorithm if there are ties
among the ci values. In particular, describe how new machines are now inserted.

9.7. Linear programming formulations for unrelated machines 21

9.19. Describe the data structures needed to insert a new machine in O(logm) time.
Also describe how to use and maintain these data structures when you schedule a
new job.
9.20. Show that the feasibility algorithm introduces at most 3m− 3 preemptions.
Also show that this bound is tight by giving a family of problems which require
3m−3 preemptions to be scheduled.

9.7. Linear programming formulations for unrelated machines

Let xi j denote the total amount of time that machine i processes job j. We shall now
formulate some constraints that must be satisfied by any feasible schedule of length
Cmax.

minimize Cmax
subject to

n

∑
j=1

xi j ≤Cmax, i = 1, . . .m, (9.16)

m

∑
i=1

xi j ≤Cmax, j = 1, . . .n, (9.17)

m

∑
i=1

xi j

pi j
= 1, j = 1, . . .n, (9.18)

and
xi j ≥ 0, for all i = 1, . . .m, j = 1, . . .n.

Constraints (9.16) ensure that the total amount of processing done by any given
machine does not exceed the time available, constraints (9.17) ensure that the to-
tal amount of processing done on any given job does not exceed the time available,
and constraints (9.18) ensure that the processing done on any given job must be suf-
ficient to complete it. Meeting these constraints is clearly necessary for any feasible
schedule. But the converse is far from obvious. It is by no means clear that a fea-
sible solution to this linear programming problem can always be transformed into a
feasible schedule with the same value of Cmax.

To address this sufficiency question consider a matrix X of xi j values which satisfy
the LP constraints above. This matrix X has exactly the same form as the constraints
of an open shop problem: for each job j, the xi j values state the total amount of pro-
cessing to be done for job j on machine i. Thus we can achieve a legal schedule using
the solution of the LP exactly when the preemptive open shop problem described by
X is feasible.

22 9. Minmax criteria with preemption

One classical theorem about open shop shows that any constraint matrix X that
satisfies (9.16) and (9.17) can be scheduled to complete all jobs by time Cmax. We
will describe that result in Chapter 11.

The problem R|pmtn|Lmax can be solved by an elaboration of the above linear
programming formulation. The problem R|pmtn,r j|Lmax requires calling on a lin-
ear programming computation as a subroutine, in essentially the same way as the
network flow computation was called on in the previous section.

Exercises
9.21. Suppose “a little birdie” told you the optimal ordering of the completion times
for an instance of the problem R|pmtn|Σ C j. Formulate and solve as a linear pro-
gramming problem.

Notes
9.1. Minimizing makespan. The algorithms of this section are adapted from Mc-
Naughton (1959) and Gonzalez and Sahni (1978B).

Horvath, Lam, and Sethi (1977) proved that the bound (9.2) can be met by a
preemptive variant of the LPT rule, which, at each point in time, assigns the jobs
with the largest remaining processing requirement to the fastest available machines.
The algorithm runs in O(mn2) time and creates an optimal schedule with no more
than (m−1)n2 preemptions. In Chapter 14 we show that the same variant of the LPT
rule solves a stochastic version of Q|pmtn|Cmax.

Exercise 9.3 concerning constraints on machine availability, is suggested by a
problem formulation of Schmidt (1983). Exercise 9.5 is from Rayward-Smith
(1987B).

9.2. Meeting deadlines. The algorithm of this section is adapted from Sahni and
Cho (1980). For Megiddo’s method, see Megiddo (1983). The Sahni-Cho algo-
rithm is also used to solve Q|pmtn|∑w jU j (Lawler, 1979A). See also Lawler and
Martel (1989). Gonzalez and Johnson (1980) give polynomial-time algorithms for
P|pmtn, tree|Cmax and Q2|pmtn, tree|Cmax.

9.3. The staircase algorithm for release dates. Horn (1974) gives an O(n2) procedure
for P|pmtn|Lmax and P|pmtn,r j|Cmax. The staircase algorithm for uniform machines
was developed independently by Sahni and Cho (1979B) and Labetoulle, Lawler,
Lenstra, and Rinnooy Kan (1984).

9.4. Network flow computations for release dates and deadlines. Horn (1974)
showed that the feasibility problem P|pmtn,r j,d j|− can be formulated as a network
flow problem. Bruno and Gonzalez (1976) noted that Q2|pmtn,r j,d j|− can be given
a similar network flow formulation. Martel (1982) showed that Q|pmtn,r j,d j|− can
be formulated as a special type of polymatroidal network flow problem, as described
more generally by Lawler and Martel (1982). Federgruen and Groenevelt (1986)
showed that the problem can be reformulated as an ordinary network flow problem.

9.7. Linear programming formulations for unrelated machines 23

9.5. Minimizing maximum lateness. The algorithms of this section are adapted from
Labetoulle, Lawler, Lenstra, and Rinnooy Kan (1984). Related ideas are discussed
in Martel (1982) and Federgruen and Groenevelt (1986).

9.6. Memory constraints. The algorithms of this section are adapted from Kafura
and Shen (1977), who proved (9.15), and Martel (1985). The second paper describes
the feasibility algorithm and also shows that Cmax can be found in O(mnlog2m) time
by looking more carefully at when the feasibility algorithm needed to be called using
Megiddo’s approach. Lai and Sahni (1984, 1983) showed how to minimize Lmax for
identical speed machines with memory constraints, and also considered settings with
release times and due-dates.

9.7. Linear programming formulations for unrelated machines. The linear program-
ming formulations presented in this section are due to Lawler and Labetoulle (1978).
For fixed m, it seems possible that the linear program for R|pmtn|Cmax can be solved
in O(n) time. Certainly this is true in the case of m = 2 (Gonzalez, Lawler, and
Sahni, 1990).

