
Contents

11. Open shops 1
Gerhard J. Woeginger
11.1. Problem statement and some definitions 1
11.2. Computational complexity: Fixed number of machines 2
11.3. Computational complexity: Arbitrary number of machines 4
11.4. A theorem on vector rearrangements 5
11.5. A tractable special case 7
11.6. Approximation: Arbitrary number of machines 10
11.7. Approximation: Fixed number of machines 12
11.8. The preemptive open shop 14

i

11
Open shops

Gerhard J. Woeginger
RWTH Aachen

There are four blacksmiths working together. One of them has specialized in putting
horseshoes on the left front leg of a horse, while the other three have specialized
respectively in putting horseshoes on the left hind leg, the right front leg, and the
right hind leg. If the work on one horseshoe takes five minutes, what is the minimum
amount of time needed to put twenty-eight horseshoes on seven horses? (Note that a
horse cannot stand on two legs.)

As each blacksmith has to handle 7 horseshoes, he needs at least 35 minutes of
working time. The following picture with horses A,B,C,D,E,F,G and blacksmiths
1,2,3,4 shows a schedule that meets this lower bound of 35 minutes. Note that each
horse receives its four horseshoes during four different time slots (so that it never has
to stand on two legs), and note that during each five minute time slot each blacksmith
works for exactly five non-interrupted minutes on a single horse.

minute minute minute minute minute minute minute
00–05 05–10 10–15 15–20 20–25 25-30 30-35

Blacksmith 1 A B C D E F G
Blacksmith 2 B C D G F E A
Blacksmith 3 C D G E A B F
Blacksmith 4 D A F B C G E

11.1. Problem statement and some definitions

An instance of the open shop scheduling problem consists of m machines M1, . . . ,Mm
and n jobs J1, . . . ,Jn. (Throughout, machines will be indexed by i and jobs will be

1

2 11. Open shops

indexed by j.) Each job J j consists of m independent operations Oi j with i= 1, . . . ,m.
The operation Oi j of job J j has to be processed on machine Mi, which takes pi j
uninterrupted time units. For every job, the order in which its operations have to be
processed is not fixed in advance but may be chosen arbitrarily by the scheduler; we
stress that different jobs may receive different processing orders.

A schedule assigns every operation Oi j to a time interval of length pi j, so that no
job is simultaneously processed on two different machines and so that no machine
simultaneously processes two different jobs. The makespan Cmax of a schedule is the
largest job completion time. The optimal makespan is usually denoted by C∗max. This
optimization problem is denoted by O||Cmax if the number m of machines is given as
part of the input, and by Om||Cmax if the number m of machines is a fixed constant
number.

In the blacksmiths and horseshoes puzzle, the four blacksmiths are four machines
M1,M2,M3,M4. Each horse forms a job, and its four legs are the four operations of
that job. All operations Oi j have length pi j = 5.

Here are some more notations. The length of the longest operation in an instance
is denoted omax = maxi, j pi j. The overall processing time of job J j will be denoted
p j = ∑

m
i=1 pi j. The overall processing time assigned to machine Mi is called the

load qi = ∑
n
j=1 pi j of the machine. The maximum job processing time is denoted

pmax = max j p j and the maximum machine load is denoted qmax = maxi qi. As no
job can be simultaneously processed on two different machines, the makespan of any
schedule satisfies Cmax ≥ pmax, and as no machine can simultaneously processes two
different jobs the makespan satisfies Cmax ≥ qmax. This yields the following lower
bound, which will be important throughout the chapter:

C∗max ≥ β := max{qmax, pmax} (11.1)

We mention that there are two other important shop scheduling problems that are
closely related to the open shop problem: In a flow shop, every job must pass the
machines in the same ordering M1, . . . ,Mm. In a job shop, the ordering of the oper-
ations is fixed a priori for every job, and different jobs may have different orderings
of operations. These variants will be further discussed in Chapters 12 and 13.

11.2. Computational complexity: Fixed number of machines

The open shop on m = 2 machines allows a very simple polynomial time solution:
There always exists a schedule whose makespan equals the lower bound β in (11.1),
and this schedule can be found in linear time.

Theorem 11.1. Problem O2||Cmax is solvable in polynomial time.

The algorithm in Theorem 11.1 is not hard to find (there are many possible ap-
proaches), and we leave it as a puzzle for the reader. A more general problem variant
considers the completion time C1 of the last operation on machine M1 and the com-
pletion time C2 of the last operation on M2, and asks for a schedule that minimizes

11.2. Computational complexity: Fixed number of machines 3

YX

Figure 11.1. Illustration of the NP-hardness argument in Theorem 11.2.

some objective function f (C1,C2) of the two machine completion times. This vari-
ant is also solvable in linear time. The no-wait problem O2|no-wait|Cmax, in which
the processing of the second operation of each job must start immediately after the
completion of its first operation, is NP-hard in the strong sense.

We now turn to the cases of Om||Cmax with m ≥ 3 machines. As usual, the com-
plexity jumps from easy to hard when we move from parameter 2 to parameter 3:

Theorem 11.2. For every fixed m≥ 3, problem Om||Cmax is NP-hard.

Proof. We only show hardness for m = 3. The proof is a polynomial time reduction
from the NP-hard PARTITION problem: “Given k positive integers a1, . . . ,ak with
∑

k
i=1 ai = 2b, does there exist an index set I ⊆ {1, . . . ,k} with ∑i∈I ai = b?”
For j = 1, . . . ,k we create a job J j with p1 j = p2 j = p3 j = a j. Furthermore, there

is a job Jk+1 with p1,k+1 = p2,k+1 = p3,k+1 = b. We claim that the PARTITION
instance has answer YES, if and only if the constructed instance of O3||Cmax has a
schedule with makespan at most 3b. The only if part is straightforward. For the if
part, consider the three operations of job Jk+1 in a schedule with makespan 3b. By
symmetry, we may assume that Jk+1 is first processed on machine M1, then on M2,
and finally on M3. Then the second operation generates two time intervals X and Y
of length b on machine M2; see Figure 11.1 for an illustration. The operations O2 j
of the other jobs must be packed into intervals X and Y , and thereby yield a solution
for the PARTITION instance. 2

As the PARTITION problem is NP-hard in the ordinary sense, the argument in The-
orem 11.2 only yields NP-hardness in the ordinary sense for Om||Cmax. The precise
complexity (strong NP-hardness versus pseudo-polynomial time solvability) of prob-
lem Om||Cmax is unknown. This complexity question has been open since the 1970s,
and it forms the biggest and most important gap in our understanding of open shop
scheduling.

Open problem 11.1. Prove that for every fixed number m≥ 3 of machines, problem
Om||Cmax is solvable in pseudo-polynomial time.

4 11. Open shops

11.3. Computational complexity: Arbitrary number of machines

Theorem 11.3 below gives the main result on the complexity of problem O||Cmax,
where the number of machines is specified as part of the input. Two fairly different
proofs are known for this theorem. The proof given below dates from the 1970s
and might be one of the most-cited unpublished results in the scheduling literature.
The second proof is implicit in a complexity analysis of short shop schedules: For
open shop, flow shop and job shop problems with integral processing times, one can
determine in polynomial time if an instance has a schedule of length at most 3, but
deciding if there is a schedule of length 4 is NP-complete.

Theorem 11.3. Problem O||Cmax is NP-hard in the strong sense.

Proof. The proof is a polynomial time reduction from the 3-PARTITION problem,
which is NP-complete in the strong sense: “Given an index set I = {1, . . . ,3k} and
positive integers a1, . . . ,a3k and b with b/4 < ai < b/2 (i ∈ I) and ∑i∈I ai = kb, does
there exist a partition {I1, . . . , Ik} of I, so that ∑i∈I j ai = b for j = 1, . . . ,k?” (Note
that each part I j must contain exactly three elements from I.)

Given an instance of 3-PARTITION, we define an instance of O||Cmax with 2k−
1 machines M1, . . . ,M2k−1 and 6k− 3 jobs. For each i ∈ I, there is a job Ji with
processing time ai on M1. For each j = 1, . . . ,k−1, there are three jobs:

• a red job R j with processing times 1 on M1, jb+ j−1 on M2 j, and (k− j)b+
k− j+1 on M2 j+1;

• a green job G2 j with processing time (k− j)b+ k− j on M2 j;

• a green job G2 j+1 with processing time jb+ j on M2 j+1.

Note that a job has operations of positive length on one or three machines; all unde-
fined operations have zero length and can be ignored. We claim that the answer to
the 3-PARTITION instance is YES, if and only if there exists a schedule of length at
most β = kb+ k−1; note that this value β coincides with the bound stated in (11.1).

Suppose that we have a YES-instance of 3-PARTITION. We then construct a
schedule of length β by putting the jigsaw puzzle together as shown in Figure 11.2.
For j = 1, . . . ,k−1:

• job R j starts at 0 on M2 j, then visits M1, and completes at β on M2 j+1;

• job G2 j completes at β on M2 j;

• job G2 j+1 starts at 0 on M2 j+1.

The jobs Ji (i ∈ I) are processed in the k intervals of length b on M1, according to the
partition of I.

Now suppose that we have a schedule of length at most β. A simple calculation
shows that the sum of all processing times is equal to (2k− 1)β, which is the total

11.4. A theorem on vector rearrangements 5

jb+ j−1 1 (k− j)b+ k− j−1

G2 j+1

R j

R j

G2 j

M2 j+1

M2 j

b 1 (k−1)b+ k−2

G3

R1

R1

G2

M3

M2

b b b b b b1 1 1 1 1

I1 I2 I j I j+1 Ik−1 IkM1

Figure 11.2. Illustration of the schedule in the proof of Theorem 11.3.

machine capacity between 0 and time β. Hence, the schedule has length β and no
idle time.

On machine M2, either job R1 precedes job G2 or R1 follows G2. If R1 precedes
G2 on M2, then R1 must follow G3 on M3, and R1 is processed on M1 in the interval
(b,b+ 1). On the other hand, if R1 follows G2 on M2, then R1 must precede G3 on
M3, and R1 is processed on M1 in the interval (β− b− 1,β− b). It follows that in
our schedule jobs R1 and Rk−1 occupy the intervals (b,b+1) and (β−b−1,β−b)
on M1.

Applying this argument to each pair (R j,Rk− j) for 1≤ j < k/2, and to Rk/2 in case
k is even, yields the conclusion that M1 processes red jobs in the intervals (j(b+1)−
1, j(b+1)) for j = 1, . . . ,k−1. The jobs Ji (i ∈ I) must be packed into k intervals of
length b on M1, and thereby yield a solution to the 3-PARTITION instance. 2

11.4. A theorem on vector rearrangements

This section introduces an auxiliary problem and an auxiliary result that will be piv-
otal for the next section. Let B ⊂ Rd be the unit ball of a norm ‖ · ‖ on Rd , that
is, a d-dimensional closed convex body that is centrally symmetric about the origin.

6 11. Open shops

Suppose we are given n vectors v1, . . . ,vn ∈ Rd that satisfy

n

∑
i=1

vi = 0 and ‖vi‖ ≤ 1 for 1≤ i≤ n. (11.2)

The goal is to find a permutation vπ(1), . . . ,vπ(n) of these vectors, so that for every
k with 1 ≤ k ≤ n the norm ‖vπ(1) + vπ(2) + · · ·+ vπ(k)‖ of the partial sum is small.
Steinitz proved that the norms of these partial sums can be bounded by a constant
that only depends on the unit ball B (and showed that the concrete constant 2d always
works). The smallest such constant is called the Steinitz constant c(B) of the norm.

Theorem 11.4. For any norm with unit ball B ⊂ Rd , the Steinitz constant satisfies
c(B)≤ d.

The proof of Theorem 11.4 is extremely elegant, and we will sketch it now. Hence,
let us consider vectors v1, . . . ,vn ∈ Rd that satisfy (11.2). In a first step, we prove
that there exists a system of subsets Vd ,Vd+1, . . . ,Vn of {v1, . . . ,vn} that satisfies the
following properties.

• Vd ⊆Vd+1 ⊆ ·· · ⊆Vn = {v1, . . . ,vn}

• |Vk|= k for 1≤ k ≤ n

• There exist real numbers λk(v) ∈ [0,1] for d ≤ k ≤ n and v ∈Vk with
(A) ∑v∈Vk

λk(v) = k−d for d ≤ k ≤ n, and
(B) ∑v∈Vk

λk(v) · v = 0 for d ≤ k ≤ n.

In other words, the coefficients λk(v) constitute a linear dependency on Vk where
all coefficients add up to k−d. The subsets Vk and the real numbers λk(v) are con-
structed by a backward induction. For k = n, we have Vn = {v1, . . . ,vn} and we define
λn(v) ≡ (n− d)/n for all v. These values satisfy condition (A) by definition, while
condition (B) follows from (11.2).

Now assume that the sets Vk+1, . . . ,Vn have already been defined together with the
corresponding coefficients λk+1(v), . . . ,λn(v). We consider the following system of
linear constraints on k+1 real variables x(v) for v ∈Vk+1.

∑
v∈Vk+1

x(v) = k−d (11.3)

∑
v∈Vk+1

x(v) · v = 0 (11.4)

0≤ x(v)≤ 1 for v ∈Vk+1 (11.5)

Note that the system (11.3)–(11.5) is solvable, as can be seen for instance by setting

x(v) =
k−d

k+1−d
λk+1(v) for v ∈Vk+1.

11.5. A tractable special case 7

Hence the underlying (k+1)-dimensional polytope is non-empty. Any extreme point
x∗ of this polytope must satisfy k+1 of the linear constraints with equality. As con-
straint (11.3) yields one such equality and as constraint (11.4) yields d such equalities
(one per dimension), in an extreme point at least k+ 1− (d + 1) = k− d of the in-
equalities in (11.5) must be tight. Because of (11.3), this implies that in an extreme
point x∗ at least one of the variables x∗(v) will be equal to zero. We construct the set
Vk by dropping the corresponding vector v from Vk+1 and by setting λk(v) = x∗(v).
This completes the construction of the subset system.

In the second step, we transform the subset system into the desired permutation.
The first d vectors vπ(1), . . . ,vπ(d) are an arbitrary ordering of the vectors in set Vd .
For k ≥ d +1, we choose vector vπ(k) as the unique element of Vk−Vk−1. We claim
that in the resulting permutation, the norm of every partial sum ∑

k
i=1 vπ(i) is at most d.

Indeed, for k≤ d the triangle inequality together with ‖vi‖≤ 1 implies ‖∑
k
i=1 vπ(i)‖≤

∑
k
i=1 ‖vπ(i)‖ ≤ d. For d + 1 ≤ k ≤ n, the claim follows from the following chain

of equations and inequalities, which is based on properties (A) and (B) and on the
triangle inequality.

‖
k

∑
i=1

vπ(i)‖ = ‖ ∑
v∈Vk

v‖ = ‖ ∑
v∈Vk

v− ∑
v∈Vk

λk(v) · v‖

≤ ∑
v∈Vk

(1−λk(v)) · ‖v‖ ≤ ∑
v∈Vk

(1−λk(v))

= |Vk|− ∑
v∈Vk

λk(v) = k− (k−d) = d

This completes the proof of Theorem 11.4. Note that the constructed permutation
does not depend on the underlying norm. Note furthermore that the entire construc-
tion can easily be implemented in polynomial time.

The bound in Theorem 11.4 on the Steinitz constants for norms in d-dimensional
space can be slightly strengthened to c(B) ≤ d − 1 + 1/d. The Steinitz constant
of the Euclidean plane (2-dimensional space with Euclidean norm) equals

√
5/2 ≈

1.118. It is known (and easy to see) that the Steinitz constant of the d-dimensional
Euclidean space is at least

√
d +3/2, and this might well be the correct value of the

d-dimensional Euclidean Steinitz constant. However, at the current moment not even
a sub-linear upper bound is known and the problem is wide open (even for d = 3).

11.5. A tractable special case

Recall that omax denotes the length of the longest operation, that pmax denotes the
length of the longest job, and that qmax denotes the maximum machine load. Through-
out this section we will assume that

q1 = q2 = q3 = · · · = qm = qmax and omax = 1. (11.6)

8 11. Open shops

π(1)

π(1)

π(1)

π(2)

π(2)

π(2)

π(3)

π(3)

π(3)

Figure 11.3. The infeasible schedule that results from the vector rearrangement.

The equality of all machine loads in (11.6) can be reached by adding dummy jobs,
and omax = 1 can be reached by scaling. We will apply the machinery for vector rear-
rangements (as described in the preceding section) to the open shop scheduling prob-
lem Om||Cmax. We introduce a unit ball B∗ for a norm ‖ · ‖∗ in (m−1)-dimensional
space, defined by

B∗ =
{
(x1, . . . ,xm−1) ∈ Rm−1 : |xk| ≤ 1 and |xk− x`| ≤ 1 for all k and `

}
.(11.7)

Every job J j with processing times pi j is translated into an (m− 1)-dimensional
vector

v j = (p1 j− pm j, p2 j− pm j, . . . , pm−1, j− pm j) . (11.8)

Because of (11.6) we have ∑
n
j=1 v j = 0 and ‖v j‖∗ ≤ 1 for 1≤ j ≤ n, so that the con-

ditions (11.2) for the vector rearrangement Theorem 11.4 are satisfied. Consequently
there exists a permutation vπ(1), . . . ,vπ(n) of these vectors, so that

‖vπ(1)+ vπ(2)+ · · ·+ vπ(k)‖∗ ≤ m−1 for k = 1, . . . ,n. (11.9)

We construct an infeasible schedule that on each machine processes the jobs without
idle time in the ordering Jπ(1), . . . ,Jπ(n); see Figure 11.3 for an illustration. This
schedule is extremely infeasible, as it schedules all operations of every job into a
short time interval; this is a consequence of (11.9) and the definition of norm ‖ · ‖∗.
The positive effect of this type of infeasibility is that we have a good understanding
of the global structure of this schedule. The completion time of operation Oi j in the
infeasible schedule is denoted by Ci j. Then for k ≥ 2 we have

C1,π(k)−C2,π(k−1) =
k

∑
j=1

p1,π(j)−
k−1

∑
j=1

p2,π(j)

=
k−1

∑
j=1

(p1,π(j)− p2,π(j))+ p1,π(k) ≤ (d−1)+1 = d.

In the inequality, we use (11.9) and p1,π(k) ≤ omax = 1 from (11.6). By applying

11.5. A tractable special case 9

analogous arguments, we derive

∆1 := max
k≥2

Cm,π(k)−C1,π(k−1) ≤ m

∆2 := max
k≥2

C1,π(k)−C2,π(k−1) ≤ m

∆3 := max
k≥2

C2,π(k)−C3,π(k−1) ≤ m

· · · · · · · · ·

∆m := max
k≥2

Cm−1,π(k)−Cm,π(k−1) ≤ m

This means that we can turn the infeasible schedule into a feasible schedule, by sim-
ply shifting all operations on every machine Mi by (i−1)m time units into the future.
The makespan of the new schedule will be bounded by qmax +(m− 1)omax, which
yields a reasonable approximation result. We will describe next how to get an even
better result. We wrap the infeasible schedule around a cylinder with circumference
qmax. Each of the individual machine schedules forms a ring around the cylinder that
may be rotated. We freeze the ring for machine M1, and we mark the starting time of
job Jπ(1) as the zero-point.

We rotate the ring for machine M2 by ∆2 time units and thereby shift the starting
time of each operation by ∆2 into the future. By doing this, we resolve all colli-
sions between operations on M1 and operations on M2: Every job has now disjoint
processing intervals on M1 and M2. Then we rotate the ring for machine M2 by
ε2 ≤ omax additional time units, so that one of the operations on M2 is started at the
marked zero-point. Next, we do a similar rotation of the ring for machine M3 by
∆2 +∆3 + ε2 + ε3 time units, so that all collisions between M2 and M3 are resolved
and so that one of the operations on M3 is started at the marked zero-point. And
so on. The ring for machine Mi is rotated by ∑

i
k=2 ∆k + εk time units, so that all

collisions are resolved and so that some operation starts at the zero-point.
In the end, we cut the rings open at the marked zero-point and flatten them into a

schedule for the considered open shop instance. If qmax−∆1 is larger than the total
length of all shifts, the resulting schedule will be feasible: Before the shifting, all
operations of job J j were scheduled very close to each other in time. The first shift
puts O1 j and O2 j into disjoint processing intervals, and each of the later shifts puts
another operation into a disjoint processing interval. As qmax is sufficiently large,
the later operations of job J j will not be shifted all the way around the cylinder and
hence cannot cause collisions with the first operation O1 j of that job. Since ∆i ≤ m
and since εi ≤ omax ≤ 1, the total length of all shifts is at most (m−1)(m+1), and
this should be at most qmax−∆1 ≥ qmax−m.

Theorem 11.5. If an instance of Om||Cmax satisfies qmax ≥ (m2 +m−1)omax, then
the optimal makespan is qmax. Furthermore, an optimal schedule can be computed
in polynomial time.

One consequence of Theorem 11.5 is that open shop problems in the real world are

10 11. Open shops

often easy to solve: If all jobs are drawn from the same distribution and if there is
a sufficiently large number of jobs, then the condition qmax ≥ (m2 +m− 1)omax in
Theorem 11.5 will hold true and the instances become easy to solve.

Theorem 11.5 was initially proved in a much stronger version, where the factor
m2 + m− 1 is replaced by 8m′ log2(m

′) + 5m′ where m′ is the smallest power of
2 greater or equal to m. This bound was later reduced by a factor of 2 and then
improved down to roughly (16/3)m log2 m.

In the light of the above results, it is natural to ask for the smallest value η(m),
so that every instance of Om||Cmax with qmax ≥ η(m)omax automatically satisfies
C∗max = qmax.

Open problem 11.2. Derive good upper and lower bounds on η(m) for m≥ 3.

We know that η(m) ≤ m2− 1+ 1/(m− 1), which is useful for small values of m,
and also that η(m) ≥ 2m− 2. Here is the bad instance for m = 3 machines that
demonstrates η(3) ≥ 4: There is one job with processing time 1 on each machine.
Furthermore, for each machine Mi (i = 1,2,3) there are three jobs with processing
time 1− ε on Mi and processing time 0 on the other two machines. Then qmax =
4−3ε and C∗max = 4− ε.

Om||Cmax remains NP-hard, if it is restricted to instances with qmax/omax = ρ

where 1 < ρ < 2m−3. It is not clear, what is going on for instances with 2m−3≤
ρ < η(m). Perhaps, the instances with ρ < η(m) are all NP-hard; in that case η(m)
would be a threshold at which the complexity jumps from NP-hard to trivial.

Open problem 11.3. Determine the computational complexity of the restriction of
Om||Cmax to instances with qmax/omax = 2m−2.

11.6. Approximation: Arbitrary number of machines

Here is a simple greedy algorithm for O||Cmax: Start at time t = 0, and whenever
some machine becomes idle and there is some job available that still needs processing
on that machine then assign that job to that machine. Ties are broken arbitrarily.

Theorem 11.6. The greedy algorithm is a polynomial time approximation algorithm
for O||Cmax with worst case ratio at most 2.

Proof. Consider a greedy schedule, and let Oi j be an operation that completes last.
Then on machine Mi, the greedy schedule has busy time intervals and idle time in-
tervals. The total length of the busy time intervals is qi ≤ qmax. Whenever Mi is
idle, it is not processing job J j and the only possible reason for this is that job J j is
being processed on one of the other machines. Therefore the total length of the idle
time intervals is at most p j ≤ pmax. This implies that the greedy makespan is at most
qmax + pmax, which according to (11.1) is bounded by 2β≤ 2C∗max. 2

How good is the worst case analysis in this theorem? Consider the following instance
with m machines and m2 −m+ 1 jobs. For i = 1, . . . ,m there are m− 1 dummy

11.6. Approximation: Arbitrary number of machines 11

+

+

+

+

+

+

+

+

+

+

+

+

Figure 11.4. A lower bound instance for the greedy algorithm on m = 6 machines. The
dummy jobs are shown in light gray; the unit-time operations of job J+ are shown in dark
gray and marked by +.

jobs that each need one unit of processing time on machine Mi and zero processing
time on all other machines. Furthermore, there is a job J+ that needs one unit of
processing time on every machine. There is a greedy schedule with makespan 2m−1
for this instance, in which from time 0 to time m− 1 all machines are busy with
processing the dummy jobs, and from time m−1 to time 2m−1 they process job J+.
As the optimal makespan is C∗max = m, the worst case ratio of the greedy algorithm
is at least 2−1/m; see Figure 11.4 for an illustration. This is tight for m≤ 4.

Open problem 11.4. Prove that the greedy algorithm for Om||Cmax has worst case
ratio at most 2−1/m.

A difficult open problem in this area asks whether there is a polynomial time ap-
proximation algorithm for O||Cmax with worst case ratio strictly better than 2. One
possible approach would work with the lower bound β defined in (11.1). For prob-
lem O3||Cmax, it has been shown that C∗max ≤ 4β/3, using heavy case analysis and
case enumeration with the help of a computer program. As the program takes more
than 200 hours of computation time, this approach does not seem to be applicable to
m≥ 4 machines.

Open problem 11.5. Prove that any instance of Om||Cmax satisfies C∗max ≤ 3β/2.

Here is an instance that demonstrates that the factor 3/2 in this open problem would
in fact be best possible. The instance uses m machines and m+ 1 jobs. For j =
1, . . . ,m the job J j consists of the operation O j j with processing time p j j = m− 1
on machine M j, and with processing times 0 on the other m− 1 machines. The
final job Jm+1 has m operations all with processing time 1. Then β = m and C∗max =
dm/2e+m−1. As m becomes large, the ratio between C∗max and β tends to 3/2.

Now let us turn to negative results on the worst case ratio of polynomial time
approximation algorithms for O||Cmax. Recall that it is NP-hard to decide whether
an O||Cmax instance with integral processing times has optimal makespan at most 4.
Since the optimal makespan of a NO-instance is at least 5, a polynomial time ap-
proximation algorithm with worst case ratio 5/4− ε would allow us to distinguish
the YES-instances from the NO-instances in polynomial time.

12 11. Open shops

Theorem 11.7. Unless P=NP, problem O||Cmax does not allow a polynomial time
approximation algorithm with worst case ratio strictly better than 5/4.

It might be possible to lift the hardness proof to get stronger inapproximability re-
sults.

Open problem 11.6. Analyze the computational complexity of the (a,b)-versions
of O||Cmax instances with integer processing times: Decide whether the optimal
makespan does satisfy C∗max ≤ a or whether it does satisfy C∗max ≥ b.

If this (a,b)-version turns out to be NP-hard for fixed integers a and b, then O||Cmax
cannot have a polynomial time approximation algorithm with worst case ratio strictly
better than b/a unless P = NP. We know that the (4,5)-version is NP-hard and that
the (3,4)-version is solvable in polynomial time. Hence the smallest interesting open
cases would concern the (5,7)-version and the (6,8)-version.

11.7. Approximation: Fixed number of machines

For an arbitrary number of machines, polynomial time approximation algorithms
cannot have worst case ratios very close to 1; see Theorem 11.7. For a fixed number
of machines, the situation is much better and there is a polynomial time approxima-
tion scheme (PTAS).

Theorem 11.8. For every fixed m≥ 3, problem Om||Cmax has a PTAS.

We now show a proof of Theorem 11.8 for the special case m = 3. (The general case
is based on exactly the same ideas, while some of the details become a bit messier.)
So let us consider some instance of O3||Cmax, and let ε with 0 < ε < 1 be some small
real number that indicates the desired precision of approximation. The running time
of our algorithm will be polynomial in the instance size, but exponential in 1/ε. The
resulting makespan will come arbitrarily close to C∗max, if we let ε tend to 0.

As often in approximation schemes for scheduling problems, the jobs are classi-
fied into big and into small jobs. We call a job big, if one of its operations has length
pi j ≥ εβ, where β is the lower bound defined in (11.1). All other jobs are small
jobs, and we want to assume for the moment that (***) all operations of all small
jobs have length pi j ≤ ε2β; we will show later how to work around this assumption.
Since the total processing time of all jobs is at most 3qmax ≤ 3β and as every big job
has processing time at least εβ, there are at most 3/ε big jobs. The algorithm now
works in two phases.

• In the first phase, we determine an optimal schedule for the big jobs. This
can be done in O(1) time, as the running time does only depend on 1/ε and
does not depend on the instance size. In the resulting schedule, every machine
processes at most 3/ε operations with at most 3/ε gaps of idle time between
the operations; see Figure 11.5 for an illustration.

11.7. Approximation: Fixed number of machines 13

Figure 11.5. An optimal schedule for the big jobs in the proof of Theorem 11.8.

• In the second phase, we pack the operations of the small jobs into the idle gaps.
This is done greedily (as in Theorem 11.6). Start at time t = 0, and whenever
some machine becomes idle at some time t, try to process an unprocessed
small operation on that machine. There are two possible scenarios under which
an unprocessed small operation Oi j cannot be started at time t: First another
operation Ok j of the same job might currently be processed on some other
machine. Secondly, the remaining part of the current gap might be too small
to accommodate Oi j. If one of these scenarios occurs, we try to schedule some
other small operation. If no operation can be scheduled, then the machine is
left idle for the moment.

Now let us analyze the makespan CA
max of the resulting approximating schedule. Let

Oi j be an operation that completes last. In the first case assume that Oi j belongs to
a big job. Then CA

max coincides with the optimal makespan for the big jobs, and we
actually have found an optimal schedule. In the second case assume that Oi j belongs
to a small job. Then we consider the busy time intervals and the idle time intervals on
machine Mi. The total length of all busy time intervals is the load qi ≤ β. Whenever
machine Mi was idle, it could not process operation Oi j. This means that either (i)
job J j was being processed on one of the other machines, or that (ii) the remaining
gap was too small to accommodate Oi j. The total idle time of type (i) is bounded by
the length of the small job J j, which is at most 3ε2β. The total idle time of type (ii) is
bounded by the number of gaps multiplied by the length of operation Oi j, which is at
most (3/ε) · (ε2β) = 3εβ. Altogether, this implies that the approximating makespan
can be bounded as

CA
max = Busy+Idle(i)+Idle(ii) ≤ β+3ε

2
β+3εβ ≤ (1+3ε

2+3ε)C∗max.(11.10)

As ε tends to 0, the error factor 1+3ε2 +3ε tends to 1. This yields the desired PTAS
modulo the assumption (***).

It remains to discuss what to do with assumption (***), which essentially postu-
lates an empty no man’s land between big operations (of length at least εβ) and small
operations (of length at most ε2β). In other words, under assumption (***) non-big
jobs must not contain operations of intermediate length ε2β < pi j < εβ. This as-
sumption will be totally wrong for most instances, but we can come very close to it
by playing around with the value of ε. This is done as follows.

14 11. Open shops

For a real number δ with 0 < δ < 1, we say that a job is δ-big, if one of its
operations has length pi j ≥ δβ and otherwise it is δ-small. An operation Oi j is δ-
nasty, if it belongs to a δ-small job and satisfies the inequality δ2β < pi j < δβ. By
N(δ) we denote the total length of all δ-nasty operations. Now consider the real
numbers δk = ε2k

for k ≥ 0. Then every operation Oi j is δk-nasty for at most one
choice of index k. We search for an index k that satisfies the inequality

N(δk) ≤ εβ. (11.11)

If some value δk violates (11.11), then the corresponding δk-nasty operations con-
sume at least εβ of the total processing time of all operations (which is at most 3β).
Hence some k ≤ 3/ε will indeed satisfy (11.11). From now on we work with that
particular index k and with that particular value δk.

The final approximation scheme works as follows. First we remove from the
instance all the δk-small jobs that contain some δk-nasty operation. To the surviving
jobs we apply the original approximation algorithm as described above with ε := δk,
and thereby find a schedule with makespan at most (1+ 3δ2

k + 3δk)C∗max according
to (11.10). In the end, we greedily add the previously removed jobs with δk-nasty
operations to this schedule. Since the overall processing time of all removed jobs is
at most 3εβ, this increases the makespan by at most 3εβ. Since δk ≤ ε, this altogether
yields a schedule of makespan at most (1+3ε2 +6ε)C∗max. This completes the proof
of Theorem 11.8 for the special case m = 3.

An FPTAS (fully polynomial time approximation scheme) is a PTAS whose time
complexity is also polynomially bounded in 1/ε. The following open problem is
closely linked to the existence of pseudo-polynomial time exact algorithms for
Om||Cmax.

Open problem 11.7. Prove that problem Om||Cmax has an FPTAS for every fixed
m≥ 3.

11.8. The preemptive open shop

We will outline a simple result to find a minimum makespan preemptive sched-
ule; that is, O|pmtn|Cmax is solvable in polynomial time. The input consists of the
processing time pi j that job J j requires for its operation on machine Mi, for each
i = 1, . . . ,m, j = 1, . . . ,n. At each point in time, each machine can process at most
one operation, and each job can have at most one of its operations being processed
by any machine.

Call row i tight if ∑ j pi j = β, and slack otherwise. Similarly, column j is tight if
∑i pi j = β, and slack otherwise. We will give an algorithm that constructs a feasible
schedule for which Cmax = β; hence, this schedule is optimal.

Theorem 11.9. For any input P = (pi j) to the open shop scheduling problem

11.8. The preemptive open shop 15

O|pmtn|Cmax, there is an optimal solution with makespan

β = max{max j ∑i pi j,maxi ∑ j pi j},

and this can be found in polynomial time.

Suppose that we can find a subset S of strictly positive elements of P, with exactly
one element of S in each tight row and in each tight column, and at most one element
of S in each slack row and in each slack column. We say that such a set S is a
decrementing set, and use it to construct a partial schedule of length δ, for some
δ > 0.

By construction, for this partial schedule, we can process all of the operations in S
concurrently. We first require that δ≤ pi j for each element pi j ∈ S; this ensures that
we have sufficient work remaining for each operation in S to process it throughout
the full length δ of the partial schedule. However, there are rows and columns that
do not have an element in S, and hence must be slack. For each slack row i (column
j) of P, the total work remaining for that machine (job) is less than the maximum
β computed; however, no work is being done on that machine (job) in this partial
schedule. Hence, the larger we set δ for that partial schedule, the closer the slack
total work remaining becomes to matching the remaining work in the tight rows and
columns.

We want to ensure that the tight rows and columns remain tight. Hence, if row i
has no element in S, we need that β−δ≥∑ j pi j, or equivalently, that δ≤ β−∑ j pi j);
similarly, if column j has no element in S, we need that δ≤ β−∑i pi j. Hence, we set
δ to the minimum of these values (i.e., pi j for elements in S, and the corresponding
differences for each row or column without an element in S).

We now have constructed a partial schedule of length δ, where the maximum
of row and column sums for the remaining processing times decreases from β to
β− δ, and yet there are either more elements of value 0, or else more tight rows or
columns. We can iteratively build a schedule of length β for the input P by repeating
this construction iteratively until the remaining processing times are all equal to 0.
Since at least one row or column becomes tight or one element becomes 0, this must
occur after mn+m+n iterations.

We must still show that such a decrementing set always exists. We have that

∑
j

pi j = β, for each tight row i;

∑
i

pi j = β, for each tight column j;

∑
j

pi j ≤ β, for each slack row i;

∑
i

pi j ≤ β, for each slack column j.

16 11. Open shops

If we let xi j = pi j/β, then this is equivalent to:

∑
j

xi j = 1, for each tight row i;

∑
i

xi j = 1, for each tight column j;

∑
j

xi j ≤ 1, for each slack row i;

∑
i

xi j ≤ 1, for each slack column j.

Of course, we also know that 0 ≤ xi j ≤ 1, for each i = 1, . . . ,m, j = 1, . . . ,n. If we
instead view x as a variable, what we have argued is that p/β is a feasible solution
to this system of linear constraints. This system defines a bounded, non-empty poly-
tope, and hence there must be an extreme point solution x∗. But this is nothing more
than the assignment polytope, and we know that all of its extreme points are integer.
If we let S be the set of elements pi j corresponding to those x∗i j = 1, we have obtained
a decrementing set.

Notes
11.1. Problem statement and some definitions. The term “open shop” was coined by
Gonzalez and Sahni (1976) in a seminal paper.

11.2. Computational complexity: Fixed number of machines. Gonzalez and Sahni
(1976) show that O2||Cmax is solvable in polynomial time (Theorem 11.1) and that
O3||Cmax is NP-hard in the ordinary sense (Theorem 11.2). Shaklevich and Stru-
sevich (1993) use extensive case distinctions to solve O2|| f (C1,C2) in linear time,
where f is non-decreasing in the machine completion times C1 and C2; Van den
Akker, Hoogeveen, and Woeginger (2003) provide a simpler proof. Sahni and Cho
(1979A) prove strong NP-hardness of O2|no-wait|Cmax.

11.3. Computational complexity: Arbitrary number of machines. The proof of The-
orem 11.3 is due to J.K. Lenstra (–). The complexity of short shop schedules was
settled by Williamson et al. (1997).

11.4. A theorem on vector arrangements. This analysis is based on the work of
Steinitz (1913). The proof of Theorem 11.4 by Grinberg and Sevastyanov (1980)
is an optimized and streamlined version of an earlier proof by Sevastyanov (1978).
The stronger bounds on the Steinitz constant in d-dimensional space and Euclidean
space are due to Banaszczyk (1987) and Bergström (1931), respectively.

11.5. A tractable special case. Belov and Stolin (1974) were the first to apply vector
arrangement methods in the area of scheduling; they applied them to the flow shop
problem. Fiala (1983) discovered the nice connection to the open shop problem
and proved the initial stronger version of Theorem 11.5. The subsequent improve-

11.8. The preemptive open shop 17

ments are due to Bárány and Fiala (1982) and Sevastyanov (1992). Sevastyanov
(1994) surveys and summarizes the history of vector arrangement methods in the
area of scheduling. Sevastyanov (1995) established the upper and lower bounds on
η(m) related to Open problem 11.2 and also NP-hardness of the restricted version of
Om||Cmax related to Open problem 11.3.

11.6. Approximation: Arbitrary number of machines. The greedy algorithm was for-
mulated by Bárány and Fiala (1982), who attibute it to a private communication with
Anna Racsmány. Theorem 11.6 can also be derived as a corollary to a more general
result by Aksjonov (1988). Chen and Strusevich have settled Open problem 11.4
for m = 2 and m = 3 by a tedious case analysis; Chen and Yu have settled the case
m = 4. The computer-based proof relating the optimum solution value for O3||Cmax
to the lower bound defined in (11.1) was performed by Sevastyanov and Tchernykh
(1998). Williamson et al. (1997) proved the negative result cited in Theorem 11.7.

11.7. Approximation: Fixed number of machines. The proof of Theorem 11.8 is due
to Sevastyanov and Woeginger (1998).

11.8. The preemptive open shop. The polynomial-time algorithm for O|pmtn|Cmax
is due to Gonzalez and Sahni (1976). Lawler and Labetoulle (1978) use the algo-
rithm to construct optimal schedules for R|pmtn|Cmax and R|pmtn|Lmax from optimal
solutions to linear programming formulations; see Section 9.7.

11.9. Other optimality criteria. For O|pmtn,r j|Lmax, Cho and Sahni (1981) observe
that a trial value of Lmax can be tested for feasibility by linear programming; bisection
search is then applied to minimize Lmax in polynomial time. Lawler et al. (1981,
1982) give a linear-time algorithm for O2|pmtn|Lmax, assuming that the due dates
are preordered; they establish strong NP-hardness for O2||Lmax.

Liu and Bulfin (1985) provide an NP-hardness proof for O3|pmtn|∑C j; however,
O2|pmtn|∑C j remains open. For the nonpreemptive version O2||∑C j, Achugbue
and Chin (1982) prove strong NP-hardness and derive tight bounds on the length of
arbitrary schedules and SPT schedules.

