
Contents

13. Job shops 1
Johann L. Hurink, Jan Karel Lenstra, David B. Shmoys
13.1. The disjunctive graph model for J||Cmax 1
13.2. Approximation algorithms: computing good solutions 3
13.3. Approximation algorithms: geometric results 15

i

13
Job shops

Johann L. Hurink
Twente University

Jan Karel Lenstra
Centrum Wiskunde & Informatica

David B. Shmoys
Cornell University

13.1. The disjunctive graph model for J||Cmax

In the job shop scheduling problem, each job J j consists of a chain of operations (i.e.,
an ordered sequence of operations), where each operation is specified to be processed
on a particular machine for a specified length of time (without interruption). Each
machine can process at most one operation at a time. For J||Cmax, the objective is to
minimize the makespan, that is, the time by which all jobs are completed.

The above description does not reveal much of the structure of this problem type.
An illuminating problem representation is provided by the disjunctive graph model.

Given an instance of J||Cmax, the corresponding disjunctive graph is defined as
follows. For every operation Oi j, there is a vertex, with a weight pi j. For every
two consecutive operations of the same job, there is a (directed) arc. For every two
operations that require the same machine, there is an (undirected) edge. Thus, the
arcs represent the job precedence constraints, and the edges represent the machine
capacity constraints.

The basic scheduling decision is to impose an ordering on a pair of operations on
the same machine. In the disjunctive graph, this corresponds to orienting the edge
in question, in one way or the other. A schedule is obtained by orienting all of the
edges. The schedule is feasible if the resulting directed graph is acyclic, and its

1

2 13. Job shops

Figure 13.1. Job shop scheduling problem. (a) Instance. (b) Instance, represented as a
disjunctive graph. (c) Feasible schedule, represented as an acyclic directed graph.

13.2. Approximation algorithms: computing good solutions 3

length is obviously equal to the weight of a maximum weight path in this graph.
The job shop scheduling problem has now been formulated as the problem of find-

ing an orientation of the edges of a disjunctive graph that minimizes the maximum
path weight. We refer to Figure 13.1 for an example.

13.2. Approximation algorithms: computing good solutions

In this section we deal with the second class of approaches mentioned in Chapter 2
to cope with NP-complete problems: we present heuristic methods to solve the job
shop problem. These methods enter the scene if the computation time to get solu-
tions is limited or the instances to be considered get larger. In both cases, branch-
and-bound methods may fail. Depending on the available time or the size of the
instances, simple constructive heuristics or more time consuming iterative methods
may be used. The main focus of this section lies on the second class of heuristics.
Starting from an initial solution achieved e.g., by a constructive heuristic, the iter-
ative methods change the given solution slightly and repeat this process iteratively
hoping that finally a good solution results. Based on the iterative process (searching)
and the restriction to slight changes (local), these methods are called local search
methods. The local search approaches presented here for the job shop problem work
very well in practice, although they give no proven performance guarantee. How-
ever, getting approximation methods with a proven performance guarantee for the
job shop problem is limited. Since it has been proven that determining whether or
not a schedule of length ≤ 4 exists is NP-complete, it follows that the problem of
finding an approximation algorithm with a performance guarantee better than 5

4 is
NP-hard.

This section is organized as follows. In the following subsection we will give a
brief description of constructive heuristics for the job shop problem. In addition to
their value as stand alone methods, these methods can be used to calculate initial
solutions for local search procedures, which form the contents of Subsection 13.2.2.
Finally, in Subsection 13.2.3 some implementational issues are discussed.

13.2.1. Constructive methods

In this part we concentrate on constructive heuristics for the job shop problem. In
addition to simple methods based on priority rules, we also discuss a more elaborate
method called shifting bottleneck procedure.

As mentioned in Section 14.1, the main scheduling decision is to define process-
ing orders on the machines leading to complete orientations. Given such a com-
plete orientation, by longest path calculations we obtain a corresponding schedule
in which an operation starts at the time where either its job or machine predeces-
sor is finished or, if both do not exist, at time 0. Schedules that have this property
(no operation can start earlier without changing at least one machine order) are called
semi-active schedules. Two important subclasses of the semi-active schedules are the

4 13. Job shops

active schedules and the non-delay schedules. The first class contains only schedules
(complete orientations) where it is not possible to start an operation earlier without
delaying the start of another operation. The second class is a subset of the first and
contains only schedules where a machine may be idle only if no jobs are available for
processing. Whereas the set of active schedules is still a dominating set (i.e., it con-
tains at least one optimal schedule), optimal schedules do not have to be a non-delay
schedules (see Exercise 13.1).

Most of the priority driven heuristics for the job shop problem generate active
or non-delay schedules. The basic principle of all these methods is the same and
can also be found in the method to calculate upper bounds within branch-and-bound
procedures. Iteratively repeat the following steps:

1. estimate the set C of operations for which the job predecessors have already
been scheduled,

2. select an operation in C and schedule it next on its machine.

Thus, in each iteration one operation is added to the given partial schedule as the last
operation on its machine. In principle, Step 2 is always realized as follows:

2.1 determine a subset C̄ ⊂C,

2.2 select an operation from C̄ using a priority rule.

Depending on the realization of these two sub-steps, different constructive heuristics
result. The priority rules in Step 2.2 may be simple rules like shortest processing time
(SPT), longest processing time (LPT), longest remaining processing time (LRPT)
etc., or may be more complex rules depending on a lower bound for the makespan
assuming that the given operation is scheduled next. The selection of the subset
C̄ ⊂C in Sub-step 2.1 may be realized in three different ways:

• Select C̄ as the subset of operations from C that can start earliest (i.e., all op-
erations in C̄ can start at the same time if added to the current partial schedule
and no other operation from C can start earlier).
In this case no idle time on machines occurs if operations are available for
processing and, thus, the resulting schedule is a non-delay schedule.

• Let u be an operation from C that finishes earliest if added to the current partial
schedule and let i be the machine on which u has to be scheduled. Select C̄
as the subset of operations from C that have to be scheduled on machine i and
can start before u would finish.
In this case, no operation can be processed earlier without delaying another
operation and, thus, the resulting schedule is an active schedule.

• Select the complete set C (i.e., C̄ =C).
In this case the resulting schedule will be a semi-active schedule.

From a theoretical point of view, the second choice is preferable since the set of non-
delay schedules generated by the first choice in general does not have to contain an

13.2. Approximation algorithms: computing good solutions 5

M := {M1, . . . ,Mm}; M0 := /0;
REPEAT

choose a machine Mi from M;
fix precedence relations for Mi;
M := M \{Mi}; M0 := M0∪{Mi};
re-optimize machines from M0;

UNTIL M = /0.

Figure 13.2. Basic structure of the shifting bottleneck heuristic.

optimal schedule and since the additional solutions that can be generated by the third
choice give no further improvements. However, the first and third choice reflect the
way planning in production plants is often carried out.

A more elaborate constructive heuristic for the job shop problem is the shifting
bottleneck heuristic (SBH). In the remainder of this subsection we describe its basic
version.

The basic idea of the SBH is to schedule the m machines one by one. In each
stage the disjunctions belonging to a specific machine are fixed taking into account
the selections already made for scheduled machines. Furthermore, at the end of
each stage, the partial schedule belonging to the fixed machines is re-optimized; see
Figure 13.2 for the basic structure of SBH.

The choice of the machine to be fixed next, the scheduling of this machine, and
the re-optimization all rely on the same process: given a partial schedule via fixed
disjunctions for a subset of machines, analyze the situation on a specific machine.
The fixed disjunctions lead to earliest possible start times (release dates) and min-
imal delivery times (which can be transformed into due dates, see Chapter 3) for
the operations to be scheduled on the specified machine. The resulting problem is
a single-machine head-body-tail problem, for which an efficient branch-and-bound
method exists to determine the minimal maximum lateness. The machine to be fixed
next is chosen to be the machine with the largest maximum lateness of the head-
body-tail problem (i.e., the bottleneck machine). On this machine, the disjunctions
are fixed according to the optimal solution of the head-body-tail problem. For the
re-optimization, the fixed machines (machines from M0) are treated consecutively by
first removing their fixed disjunctions and then rescheduling them according to the
optimal solution of the head-body-tail problem that results after dropping the given
schedule on the machine.

The SBH is an effective heuristic for the job shop problem. Several variants of the
method and integrations of the method in other heuristics have been presented. The
variations mainly differ in the way how the re-optimization is organized. Finally, it
is worthwhile to mention that the basic structure of SBH also can be used to solve
generalizations of the job shop problem.

6 13. Job shops

choose an initial solution s ∈ S;
REPEAT

choose a solution s′ ∈ N(s);
s := s′;

UNTIL stopping criteria.

Figure 13.3. Basic structure of local search.

13.2.2. Local search

The methods presented in the previous subsection basically construct one feasible
solution. However, as in the re-optimization step of SBH, it may be worthwhile to
change this solution somehow and achieve other, hopefully better, feasible solutions.
Local search methods form an important and widely used class of such approaches.

In the following we first give a general overview of these methods and, afterwards,
show how they can be adopted to the job shop problem.

General overview. Local search methods form a generic class of heuristics. Gener-
ally speaking, local search methods iteratively move through the set of feasible so-
lution. Based on the current and maybe previously visited solutions, a new solution
is chosen. The choice of the new solution is restricted to solutions that are somehow
close to the current solution (in the ‘neighborhood’ of the current solution).

Looking at the general structure of local search, we may conclude that one of the
basic ingredient of local search is the neighborhood. The neighborhood determines
in an essential way how the search process will behave. To define a neighborhood
on a set S of feasible solutions, we have to specify a corresponding set of neighbors
N(s) ⊂ S for each solution s ∈ S. In principle, these sets N(s) may be arbitrary
subsets of S. However, following the idea of local search, these solutions should be
somehow ’similar’ to s. A systematic way of defining neighborhoods is to specify a
set OP of operators op : S→ S which perturb solutions in some way. In this case,
the set of neighbors of a solution s is defined by N (s) = {op(s)|op ∈ OP}.

Using the notion of neighborhoods, the basic structure of local search is given
in Figure 13.3. This basic local search algorithm may be made concrete in various
ways. Depending on the method of choosing solutions from the neighborhood of
the current solution and the way in which the stopping criteria are defined, we get
different local search methods.

A very intuitive and natural way to make concrete the choice of a solution from
the neighborhood of the current solution and the stopping criteria in the algorithm
of Figure 13.3 is to make in each step locally the best choice and to stop if this does
not lead to an improvement. This method is called iterative improvement and has its
roots in the year 1958. Its main characteristic is that it stops if a local optimum with
respect to the given neighborhood has been reached. Generally, this local optima
depends on the chosen initial solution and no information is available on how much

13.2. Approximation algorithms: computing good solutions 7

the quality of this solution differs from that of the global optimum.
It took until the mid-1980s before alternative local search methods were devel-

oped that did not terminate at the first local optimum. The first method of this type
was simulated annealing. This method has two stochastic elements. First, a solu-
tion is chosen from the set of neighbors of the current solution according to some
given distribution (each neighbor usually has the same probability). Afterwards, de-
pending on the difference between the objective values of the chosen and the current
solution, it is decided whether we move to the chosen solution or stay with the cur-
rent solution. If the chosen solution has a better objective value, we always move to
this solution. Otherwise, we move to this solution with a probability that depends
on the difference between the two objective values. More precisely, if s1 denotes the
current solution and s2 the chosen solution, we move to s2 with probability

p(s1,s2) = emin{c(s1)−c(s2),0}/c, (13.1)

where c(s) denotes the objective value of a solution s. The parameter c is a positive
control parameter that decreases with increasing number of iterations and converges
to 0. This has the effect that the probability of moving to a solution with larger
objective value decreases in the course of time and that, finally, almost only improv-
ing solutions are accepted. Furthermore, the probability (13.1) has the property that
large deteriorations of the objective function are accepted with lower probability than
small deteriorations. Under certain conditions for the neighborhoods and the way in
which the control parameter c is decreased, it is possible to prove that simulated an-
nealing is asymptotically an optimization algorithm. The proof is based on results
on Markov chains.

Another local search method that allows nonimproving moves is the tabu search
method. Its central idea is to deterministically guide the local search and to use
information from the past to avoid cycling. The most straightforward realization
of this idea is to always choose the best solution from the neighborhood (steepest
descent or, if no descent is possible, mildest ascent), but to reduce the neighborhood
by all solutions already visited. However, for practical reasons it is not possible to
keep track of all solutions already visited and, thus, the process of reducing the set
of neighbors is realized in a different way. Generally, the search for the next solution
s′ ∈ N(s) is restricted to a subset Nred ⊂ N(s), whereby either a set of operators from
OP or solutions with certain properties are forbidden (tabu). These restrictions vary
in time and are chosen so that it is not possible to revisit a certain solution within a
given number of iterations. More precisely, depending on the last k moves, a set of
operators or a set of properties is defined as tabu. Since by this approach not only
already visited solutions but also other solutions may be excluded from the search
process, so-called aspiration criteria are used to overrule the tabu status of a solution.
A simple aspiration criterion is that a solution has a better objective value than the
best solution found thus far (such a solution has not been visited before and, thus,
should not be tabu). However, more elaborate aspiration criteria can also be used.

Another type of solution approaches to solve combinatorial optimization prob-
lems is given by genetic algorithms. These methods are based on principles from

8 13. Job shops

population genetics and the theory of evolution. Roughly speaking, genetic algo-
rithms start with some subset of feasible solutions (a population) and iteratively re-
place the current population by a next population. Thus, in principle, genetic algo-
rithms are local search methods on subsets of solutions.

The process of building new populations is organized by two main operators. The
first is called mutation and is applied with some given probability to each solution
of the current population. A mutation changes the given solution slightly. Mostly,
there are several alternatives in changing the solution and the choice for one of them
is done randomly. Thus, a mutation is nothing but a random selection of one solution
in the neighborhood of the given solution, whereby the neighborhood is defined by
the possible changes mutations can perform. The second operator is called recombi-
nation. Recombination is used to produce a subset of new solutions (offsprings). To
achieve this goal, pairs of solutions (parents) are selected from the current popula-
tion and for each pair two new solutions (children) are constructed by ’shuffling’ the
given solutions. Again, there are several ways of shuffling solutions and the choice
between these alternatives will be done randomly. For selecting pairs of solutions the
quality of the solutions (objective values) plays an important role. Often, the parents
are selected randomly using a distribution on the current population that depends on
the quality of the solutions.

After applying mutations and recombinations a new population has to be deter-
mined. This new population will be a subset of the union of the population after mu-
tation and the set of new solutions resulting from recombination. It is often chosen as
the subset of the k best solutions, where k denotes the cardinality of the population.

Application to the job shop problem. One main step for applying local search
to a job shop problem is to decide on the underlying neighborhood. Most of the
commonly used neighborhoods rely on the representation of solutions by complete
orientations and change the orientation of one or more edges. In this context, two
properties are helpful:

• reversing the orientation of an edge on a critical path of a feasible solution
leads again to a feasible solution (see Exercise 13.2),

• only changes that affect the first or last operation of a block have the potential
to lead to an improving solution.

A critical path is a longest path in the directed graph corresponding to the feasible
solution, and a block is a maximal sequence of adjacent operations that are processed
on the same machine and belong to a critical path. The first property gives a suffi-
cient condition to get feasible neighbors and the second indicates which solutions
are non-promising with respect to the objective value. However, due to the nature of
local search even a bad solution with respect to the objective value may be a good
solution for the further search process. Furthermore, the given sufficient condition
on feasibility may be much too restrictive for the search. Therefore, only a few of
the following neighborhoods rely completely on these properties.

13.2. Approximation algorithms: computing good solutions 9

• the critical path interchange neighborhood NCP
inter

NCP
inter allows the interchange of two adjacent operations of a block on the crit-

ical path (i.e., the reversion of the corresponding edge) and, thus, is based on
the first property.

• the end-of-block interchange neighborhood Nend−block
inter

Nend−block
inter is a sub-neighborhood of NCP

inter, where only the interchange of the
first two operations or the last two operations of a block are allowed. This
reduction is based on the second property, since the interchange of two internal
adjacent operations of a block cannot lead to an improved solution.

• the critical path permutation of three neighborhood NCP
3−perm

NCP
3−perm is an extension of NCP

inter and considers, in addition to the interchange
of two adjacent operations of a block, the effect if after this interchange the
machine predecessor or machine successor is interchanged with the two op-
erations. More precisely, for four consecutive operations p,v,w,s on machine
with v,w lying on a critical path, the following sequences are considered as
neighbors if they lead to a feasible solution: (p,w,v,s), (w, p,v,s), (w,v, p,s),
(p,w,s,v), and (p,s,w,v).

• the end-of-block permutation of three neighborhood Nend−block
3−perm

Again, Nend−block
3−perm is the sub-neighborhood of NCP

3−perm, where only neighboring
operations v,w are considered which are the first two operations or the last two
operations of a block.

• the shift to the end of a block neighborhood Nblock
shi f t

Nblock
shi f t allows a shift of an operation of a block immediately in front of or after

the other operations of its block, provided that the resulting solution is feasible.
Otherwise, the operation is moved as far as possible to the beginning or end
of the block resulting still in a feasible solution. Again, this neighborhood is
based on the second property.

• the shift on the same machine neighborhood Nmachine
shi f t

Nmachine
shi f t executes shifts for two operations v,w occurring on a critical path and

scheduled on the same machine. If v is scheduled before w on the critical path,
shifting v directly after w and shifting w directly before v are possible neigh-
bors. However, if both the machine predecessor of v and the machine successor
of w are on the critical path, the resulting neighbor cannot improve the current
solution (see Exercise 13.3) and is not included in the neighborhood.

• the end-of-block three interchange neighborhood Nend−block
3−inter

The basic idea of this neighborhood is the same as for Nend−block
inter . However,

under certain conditions, not only the two adjacent operations v,w are inter-
changed but also the job successor of the first operation (v) is interchanged

10 13. Job shops

with its machine successor and one of the job predecessors of the second op-
eration (w) is interchanged with its machine predecessor.

• the shifting bottleneck neighborhood NSBH
A neighbored solution for NSBH is obtained by removing all orientations on a
machine with at least one operation on a critical path and replacing them by
any other orientation leading to a feasible solution.

• the several machine shifting bottleneck neighborhood Nseveral
SBH

In contrast to NSBH , not only the orientation on one machine but the orienta-
tions on m−t machines are replaced for this neighborhood (t is a small number
depending on m).

Most of the presented neighborhoods change the processing order on only one ma-
chine. Only Nend−block

3−inter and Nseveral
SBH change orders on more than one machine.

For local search methods like iterative improvement, simulated annealing, and
tabu search a choice for one of the above defined neighborhoods is sufficient to
describe the search process. However, for genetic algorithms the situation is a bit
more complex. Whereas the above neighborhoods may be used for mutations, also
operators for the recombination have to be given. One possible realization of the re-
combination, which is somehow similar to the above defined neighborhoods is given
as follows:

• recombination by interchanges Rrandom
inter

Given two solutions S1 and S2 an offspring is constructed by repeating dnm/2e
times: select randomly an edge {v,w}; if this edge is oriented in S1 and S2 in
different ways, and if it belongs in S1 to a critical path, interchange v and w in
S1. The resulting solution S1 is the offspring.

Other realizations of the recombination rely on constructive heuristics for the job
shop problem. The simplest one uses the priority driven heuristic presented in Sub-
section 13.2.1, which led to an active schedule:

• recombination by constructing active schedules Ractive
heur

Given two solutions S1 and S2 an offspring is constructed by a priority driven
constructive heuristic using the following priority rule for the operations in C̄
(C̄ is determined by the second possibility given in Subsection 13.2.1): choose
the operation which starts first in S1 with probability (1− ε)/2, the operation
which starts first in S2 with probability (1− ε)/2, and randomly one of the
other operations with probability ε (ε is a given small positive value).

All the presented neighborhoods and recombination methods may be realized using
the mixed graph representation of the job shop problem. However, there also exists
local search methods, especially genetic algorithms, which use different representa-
tions. One of these representations based on a constructive heuristic and perturbation
of the data will be given in the notes.

13.2. Approximation algorithms: computing good solutions 11

Combining one of the sketched versions of local search with one of the above
defined neighborhoods leads to a suitable heuristic for solving the job shop problem.
However, to get efficient methods often some variations or adaptions of the methods
are useful. In the following, some variations or adaptions of local search methods
proposed for the job shop problem are given.

• Iterative improvement:

This method stops in the first local optima and, therefore, evaluates in general
only a few solutions. Thus, to make it somehow compatible to the other local
search methods, a multi-start strategy (i.e., start the search for several different
starting solutions) has to be applied.

• Simulated annealing:

Besides the ‘pure’ variant also backtracking strategies (after a certain number
of iterations without improving the best found solution so far, move back to
the best found solution and restart the search) or a combination with iterative
improvement (do not evaluate a neighbor directly, but investigate its potential
for the further search by applying (a few) iterations of iterative improvement
to the neighbor before evaluating it) have been proposed.

• Tabu search:

For tabu search several variations have been proposed in the literature. The
first type of variation depends on the definition of the tabu status. In general
a list (tabu list) keeps track of the last k moves and the entries of the tabu
list are used to define operators or solutions as tabu. On the one hand, the
length of this list (k) may be fixed or may vary over time. On the other hand,
the choice which operators/solutions are declared as tabu in dependence of
the used operator may vary and also the strictness of the tabu status may be
different (e.g. aspiration criteria).

Another variation of tabu search results from the incorporation of backtracking
strategies. Here one can vary the conditions for a backtracking move (e.g.
maximum number of moves without improving the best found solution), the
choice for the solution where the search is restarted (e.g. the best solution),
and the restart conditions (e.g. use the next best neighbor or use the same
solution but with a different length of the tabu list).

Finally, within tabu search the search for the best non-tabu neighbor may be
speeded up by replacing the exact evaluation of the objective value of neigh-
bored solutions by quickly computed bounds on the change of the objective
value.

• Guided local search:

Guided local search uses elements from tabu search and back tracking and was
first applied to the job shop problem by Balas and Vazacopoulos. In each step,

12 13. Job shops

a neighborhood tree of solutions is constructed, where the current solution
serves as root. For each node of the tree, a set of descendants is created by
generating neighbored solutions using some neighborhood structure. After
creating the tree, one of its best solutions is chosen as the new current solution
and, thus, serves as the root of the next tree.

The main ingredient of guided local search is the construction of the neigh-
borhood tree. Here the depth of the tree, the number of descendants per node,
and the choice of the descendants play an important role. To bound the com-
putation times, the depth and the number of descendants are kept small and
the selection of descendants is based on lower bounds on the completion time
of the neighboring solution and not on an exact evaluation of the makespan.
Furthermore, within the generation process it is guaranteed that on a path to a
node from the root, none of the neighborhood changes made is reversed.

• Genetic algorithms:

Several proposed genetic algorithms for the job shop problem incorporate
other local search methods. In the simplest variants, the solutions generated by
mutations and recombinations are locally optimized by iterative improvement
or improved by fast versions of simulated annealing.

Other genetic algorithms used priority sequences for the machines as solution
representation. For such a representation, a corresponding solution is achieved
by applying some constructive heuristic based on priority rules. Somehow,
these representations are similar to complete orientations. However, the main
difference is that the set of sequences may not lead to a complete orientation
since the resulting mixed graph may contain cycles. The advantage of the
priority sequence based representation is that within the mutation and recom-
bination process one does not have to deal with this feasibility question, since
the application of the constructive heuristic acts as a repair mechanism. Some
authors suggest that, after the application of the constructive heuristic, to re-
place the given priority sequence with the concrete sequences on the machines
in the constructed schedule.

13.2.3. Implementation

Many constructive heuristics for the job-shop problem rely on priority-based dis-
patching rules. However, the quality of the solutions achieved by these methods is
not very good and these methods are mostly just used within other methods, e.g., to
calculate initial solutions.

The more successful constructive method, the shifting bottleneck heuristic, was
proposed by Adams et al. In the original version, in each iteration they re-optimize
all machines from M0 three times in three cycles. In the first cycle the machines
are rescheduled in the order they were inserted in M0 and in last two cycles the
machines are rescheduled in the order of their maximum lateness in the previous

13.2. Approximation algorithms: computing good solutions 13

cycle. Note, that these rescheduling operations of the machines can be seen as one
neighborhood step in NSBH , where the current schedule on the machine is replaced
by its best neighbor. Applegate & Cook [1991] present a variation of this method by
not fixing the number of cycles for the re-optimization but repeating this step until
for no machine an improvement is obtained.

For the job shop problem a large number of different local search methods has
been proposed in the literature. It starts with more or less basic versions of the
different search methods using a single neighborhood.

• Aarts et al. test iterative improvement with neighborhoods NCP
inter and Nend−block

3−inter .

• The first versions of simulated annealing are given by Matsuo et al. and Van
Laarhoven et al. Matsuo et al. use neighborhood Nend−block

3−inter but incorporate
also some features of iterative improvement. Van Laarhoven et al. use neigh-
borhoods NCP

inter and Nend−block
3−inter .

• Tabu search was first applied by Dell’Amico & Trubian and Taillard. Dell’A-
mico & Trubian use neighborhoods Nend−block

3−perm and Nblock
shi f t and a tabu list of

variable length, whereas Taillard uses neighborhood NCP
inter and tabu list of fixed

length. Furthermore, Taillard does not estimate the makespan of all neighbored
solutions exactly but uses lower bounds.

• Balas & Vazacopoulos proposed guided local search using the neighborhood
Nmachine

shi f t . They bound the size of the tree by limiting the number of descen-
dants, by fixing part of the orientations, and by bounding the depth of the tree
by a logarithmic function of the number of operations.

• The first genetic algorithms for the job shop problem were proposed by Davis
and Falkenauer & Bouffouix. Both use priority sequences to represent solu-
tions and a heuristic to produce a non-delay schedule from a given representa-
tions.

Besides these first, and often basic, local search approaches, various other, more
elaborate, applications of local search to the job shop problem are given in the litera-
ture. Several of these approaches combine different local search methods or combine
local search with the shifting bottleneck heuristic. For genetic algorithms besides the
mentioned representation based on orientations or priority sequences, also other, less
straightforward, representations have been proposed. E.g., Dorndorf & Pesch use a
sequence of priority rules as representation. Using this sequence a schedule is built
up by a simple priority driven heuristic, where in case of a conflict in the ith iteration
the priority rule on position i of the sequence is used to solve the conflict. Ponnam-
balam et al. present a comparative evaluation of different representations for genetic
algorithms for the job shop problem. They compare operation-based, job-based, pri-
ority list-based, and priority rule-based representations and come to the conclusion
that priority list-based representations lead to the best quality of the solutions and
that operation-based representation lead to the smallest computation times.

14 13. Job shops

Empirical evidence supports the general conclusion that hybrid approaches (com-
bination of different methods) are mostly superior to pure approaches. In the re-
maining of this section we shortly describe the basic ideas behind the three most
successful local search approaches for the job shop problem.

Balas & Vazacopoulos combine the shifting bottleneck heuristic with their guided
local search approach. In the basic version they realize the re-optimization step of
the shifting bottleneck heuristic by their guided local search approach using the cur-
rent partial schedule as initial solution. The best schedule obtained in this processed
is used to continue with the shifting bottleneck heuristic. Using the solution of this
basic version as initial solutions two other variants are proposed. In the first, called
iterated guided local search, iterations of re-optimization cycles are carried out until
no improvement is found. Each cycle removes the orientation of one machine, ap-
plies guided local search for a limited number of trees, adds the removed machine
again, and applies guided local search to the complete schedule for a limited number
of trees. The second variant, called reiterated guided local search, uses the solution
of the first variant as an initial solution and repeats a fixed number of cycles, where
the orientation of

√
m machines (randomly chosen) are removed, guided local search

with a limited number of trees is applied to the resulting partial schedule, and the
removed machines are added back by applying the basic version of the method.

Pezzella & Merelli also use elements from the shifting bottleneck heuristic and
combine them with tabu search elements. The initial solution is achieved by a stan-
dard shifting bottleneck heuristic. Afterwards tabu search is applied using as neigh-
borhood the neighborhood NCP

inter extended by some further neighbors achieved via
shifts within blocks. Within the tabu search approach again an element of the shift-
ing bottleneck heuristic is used: every time a new best solution has been found, a
re-optimization as within the shifting bottleneck heuristic is applied to all machines
involved in the critical path.

The third, and at the moment the best, approach is given by Nowicki & Smut-
nicki. Their approach is a tabu search approach using backtracking and the under-
lying neighborhood is Nsend−block

inter . Each time a certain number of iterations yield
no improvement to the best solution found, the method restarts from the best solu-
tion found with a different neighborhood move. Furthermore, if from one solution
all possible restarts have been carried out, this best solution is no longer used for
restarts, but the former best solution will act as base for the restarts.

Exercises
13.1. Give an instance of the job shop problem, where no optimal schedule is a non-
delay schedule.
13.2. Show that reversing the orientation of an edge on a critical path of a feasible
solution leads again to a feasible solution.
13.3. For the neighborhood Nmachine

shi f t solutions resulting from shifts for operations
v,w, where both the machine predecessor of v and the machine successor of w are on
the critical path cannot improve the given solution.

13.3. Approximation algorithms: geometric results 15

13.3. Approximation algorithms: geometric results

As was true for both open shops and flow shops, it is possible to derive a surpris-
ingly strong result for the job shop problem using the vector sum theorem, which
was proved in Chapter 11. The bound on the absolute error of the approximation
algorithm will not be as good as it was for the flow shop problem, but it retains the
crucial property: the absolute error is independent of the number of jobs, n, and is
bounded by a function of the number of machines, m, the maximum number of oper-
ations of a job, µmax = max j µ(j), and the maximum processing time of an operation,
pmax = maxh, j ph j. More precisely, we will prove the following result.

Theorem 13.1. For any instance of J||Cmax, a schedule of length at most C∗max +
O(mµ3

max pmax) can be found in polynomial time.

This theorem is significantly more difficult to prove than Theorem 13.3, the analo-
gous result for flow shop scheduling. In fact, we will only prove that it holds under
certain assumptions about the input. We assume that each job has the same num-
ber of operations and that each machine has the same load; that is, µ(j) = µ for
each J j and, if Πi = ∑ι(h, j)=i ph j and Πmax = maxi Πi, then Πi = Πmax for each Mi.
The algorithm will deliver a schedule of length Πmax +O(mµ3 pmax). Any instance
can be modified to one satisfying these assumptions, without increasing the bound
guaranteed; but this extension is left to the reader (see Exercise 13.4).

Since the proof is rather intricate, we will describe the main ideas before pro-
ceeding to the details. Focus on the set of the hth operations of jobs that must be
performed on machine Mi, and let Πhi denote their total processing time. The key
step in the algorithm will be to order the jobs in such a way that, for any r con-
secutive jobs, the total processing time of their operations that belong to this set is
approximately equal to (r/n)Πhi. Note that a job need not have its hth operation on
Mi, in which case it contributes 0 to the total. For simplicity of notation, assume that
the jobs are indexed in this order.

We will use the ordering to partition the job set into n/r sets of r consecutive jobs
each. The value of r will be chosen so as to ensure that the proposed schedule is
feasible on the one hand and sufficiently short on the other hand; for the time being,
simply assume that n/r is integral. Call the job set {J(g−1)r+1, ...,Jgr} group g, for
g = 1, ...,n/r.

The schedule for Mi will consist of a sequence of n/r+ µ− 1 blocks (cf. Figure
13.4). In the first block, we schedule the first operations of the jobs in group 1
that must go on Mi; in the second block, there are first operations from group 2
and second operations from group 1; and so on. A typical block b contains first
operations from group b, second operations from group b− 1, up to µth operations
from group b− µ+ 1. The last group does not start its first operations until block
n/r, and thus finishes only in block n/r+µ−1.

Note that, for any b (b = 1, ...,n/r+ µ− 1) and j (j = 1, ...,n), there is at most
one machine that processes an operation of J j in its bth block. Now consider the total
processing time in block b on Mi, with µ≤ b≤ n/r. The ordering ensures that the hth

16 13. Job shops

Figure 13.4. Schedule for Mi.

operations from group b−h+1 that go on Mi total roughly (r/n)Πhi, for h = 1, ...,µ.
These sum, even more roughly, to (r/n)∑

µ
h=1 Πhi = (r/n)Πi = (r/n)Πmax. However,

this calculation does not apply to, for example, the second block, which contains only
first and second operations, summing roughly to (r/n)(Π1i +Π2i). We correct this
by adding idle time to certain blocks: for each block without hth operations, we
introduce idle time of total length (r/n)Πhi. For example, in the second block we
introduce idle time totaling (r/n)∑

µ
h=3 Πhi. As a result, the length of each block on

each machine is roughly equal to (r/n)Πmax.
An intuitive interpretation of this schedule is that we try to group the jobs so that

their operations can be synchronized and pipelined. The synchronization is achieved
because each block takes roughly the same amount of time on each machine, and the
pipelining is achieved because the starting times of the jobs are staggered by groups.
What is the length of this schedule? Since each block is roughly of length (r/n)Πmax,
and there are n/r+µ−1 blocks, we get a schedule of length

Πmax +
r
n
(µ−1)Πmax. (13.2)

Unfortunately, there is a difference between blocks of roughly equal length, and
blocks of equal length. The main problem with roughly equal length blocks is that it
is possible that two consecutive operations of the same job are done simultaneously
or even out of order. For example, block b on Mi may end somewhat later than

13.3. Approximation algorithms: geometric results 17

block b+ 1 starts on Mi′ . If Oh j is scheduled late within block b on Mi and Oh+1, j
is scheduled early within block b+ 1 on Mi′ , then Oh+1, j may start before Oh j is
completed. This can be fixed by paying attention to the order in which the operations
are performed within a block. We will subdivide each block into r phases, and
guarantee that all of the operations of the same job are scheduled within the same
phase of subsequent blocks. As long as r is large enough, two operations of a job
will not overlap. In fact, we will choose r to be roughly equal to nmµ2 pmax/Πmax. If
this is substituted into expression (13.2) for the schedule length, we get the claimed
result.

After this motivation, giving the proof is just a matter of writing out the precise
equations and bounds that correspond to the intuition. We first make explicit the
properties of the desired ordering of the jobs. The following notation for the pro-
cessing times will be convenient:

pi
h j =

{
ph j if ι(h, j) = i,
0 otherwise.

Lemma 13.2. For any instance of J||Cmax, a permutation π of {1, ...,n} such that

k
n

Πhi−mµpmax ≤
k

∑
j=1

pi
hπ(j) ≤

k
n

Πhi +mµpmax,h = 1, ...,µ, i = 1, ...,m,k = 1, ...,n,

can be found in polynomial time.

Proof. This is a straightforward corollary of Theorem 11.4. For j = 1, ...,n, let
v j be the (mµ)-dimensional vector with components pi

h j − (Πhi/n) (h = 1, ...,µ,
i = 1, ...,m). By definition, ∑

n
j=1 pi

h j = Πhi for all h and i, so that ∑
n
j=1 v j = 0. Since

||v j|| ≤ pmax, Theorem 11.4 implies that a permutation π can be found in polynomial
time such that

−mµpmax ≤
k

∑
j=1

pi
hπ(j)−

k
n

Πhi ≤ mµpmax,h = 1, ...,µ, i = 1, ...,m,k = 1, ...,n.

This is equivalent to the statement of the lemma. 2

We will use this permutation π to construct the schedule. For simplicity of nota-
tion, we reindex the jobs so that the identity permutation satisfies the property stated
in the lemma. Focus on block b on Mi. Recall that this block consists of the hth
operations from group b−h+1 that go on Mi, where h ranges over all or part of the
set {1, ...,µ} (cf. Figure 13.4). Recall also that group b− h+ 1 consists of the jobs
J(b−h)r+1,J(b−h)r+2, ...,J(b−h+1)r. Hence, the operations processed in block b on Mi

18 13. Job shops

are contained in the following matrix:
O1,(b−1)r+1 O1,(b−1)r+2 . . . O1,br
O2,(b−2)r+1 O2,(b−2)r+2 . . . O2,(b−1)r
...

...
...

Oµ,(b−µ)r+1 Oµ,(b−µ)r+2 . . . Oµ,(b−µ+1)r

 (13.3)

To make things precise, we note that, for a given block index b(1 ≤ b ≤ n/r +
µ− 1), the operation index h ranges from max{1,b− n/r + 1} to min{µ,b}. An
illegitimate value of h implies a group index g outside the range {1, ...,n/r} and a
job index outside the range {1, ...,n}.

Phase s of block b will contain the operations in column s of matrix (13.3), for
s= 1, ...,r. The schedule for this phase on Mi is formed by considering the operations
in column s in order of increasing row index h. If such an operation Oh j is not on Mi
or, in other words, if pi

h j = 0, then continue to the next operation in the column. If
an operation Oh j is undefined or, in other words, if h is outside its range, then let Mi
be idle for Πhi/n units of time. Otherwise, schedule Oh j on Mi.

This completes the description of the schedule. We now have to show that it is
a feasible schedule, and that its length is within the claimed bound. The following
lemma is the key to both propositions. Let z denote the total number of phases of the
schedule, i.e., z = r(n/r+µ−1) = n+ r(µ−1), and let Cit denote the time at which
the first t phases of the schedule are completed on Mi.

Lemma 13.3. The schedule described above satisfies

t
n

Πmax−mµ2 pmax ≤Cit ≤
t
n

Πmax +mµ2 pmax, i = 1, ...,m, t = 1, ...,z.

Proof. Focus on a machine Mi and a phase t. To obtain these bounds on Cit , we first
fix h (1≤ h≤ µ) and compute the total time allocated to Mi during the first t phases,
either to process hth operations or to be idle whenever h is outside the range induced
by the phase value. Let us extend the notation pi

h j to include these idle periods:

pi
h j =

{
pi

h j if Oh j is defined,
Πhi/n otherwise.

It is easily seen from the above matrix that the (possibly undefined) h th opera-
tion that is slated for phase 1 is Oh,(1−h)r+1. Thus, the total time (both processing
and idle) associated with hth operations on Mi during the first t phases is given by
∑
(1−h)r+t
j=(1−h)r+1 pi

h j. Suppose that t ′ of these phases correspond to undefined operations,
and that the remaining t− t ′ correspond to legitimate operations (though not neces-
sarily on Mi). We consider their contributions to this sum separately. Each of the
former contributes an idle period of length Πhi/n, which sum to t ′Πhi/n. The latter
phases correspond to the first t− t ′ jobs, and Lemma 13.2 implies that these sum to

13.3. Approximation algorithms: geometric results 19

within mµpmax of (t− t ′)Πhi/n. We see that

t
n

Πhi−mµpmax ≤
(1−h)r+t

∑
j=(1−h)r+1

pi
h j ≤

t
n

Πhi +mµpmax.

Summing these inequalities over all possible h, we get

Cit =
µ

∑
h=1

(1−h)r+t

∑
j=(1−h)r+1

pi
h j ≥

µ

∑
h=1

(
t
n

Πhi−mµpmax) =
t
n

Πmax−mµ2 pmax

and

Cit =
µ

∑
h=1

(1−h)r+t

∑
j=(1−h)r+1

pi
h j ≤

µ

∑
h=1

(
t
n

Πhi +mµpmax) =
t
n

Πmax +mµ2 pmax.

2

In order to ensure feasibility of the schedule, we choose r so large that, irrespec-
tive of the machine, phase br+ s finishes no later than phase (b+ 1)r+ s starts. In
other words, we want to guarantee that Cit ≤Ci′,t+r−1 for any pair (Mi,Mi′) and any
t (t = 1, ...,z− r). By Lemma 13.3, it suffices to make sure that

t
n

Πmax +mµ2 pmax ≤
t + r−1

n
Πmax−mµ2 pmax

or, equivalently,

2mµ2 pmax ≤
r−1

n
Πmax.

Therefore, if we set r = lc2nmµ2 pmax/Πmaxrc+1, then we get a feasible schedule.
As for the length of this schedule, we substitute this value of r into the upper

bound on Ciz given by Lemma 13.3, recalling that z = n+r(µ−1). We conclude that
the schedule is no longer than

n+ r(µ−1)
n

Πmax +mµ2 pmax

= Πmax +(lc
2nmµ2 pmaxΠmax

r
c+1)(µ−1)

Πmaxn
+

mµ2 pmax

= Πmax +O(mµ3 pmax).

This completes the proof of Theorem 13.1.

Exercises
13.4. Show that Theorem 13.1 holds for any job shop instance. In particular, show

20 13. Job shops

how to pad the input so that each job has the same number of operations and each
machine has the same load, without increasing the bound stated by the theorem.
(Hint: To balance the load, consider increasing some of the pi

h j for which ι(h, j) 6= i.)
Does the proof really require that n/r be integral?
13.5. Consider the special case of the job shop problem when both m and µmax are
fixed. Show that, for any ε > 0, there exists a (2+ ε)-approximation algorithm.
13.6. Consider the following generalization of the job shop problem: each job con-
sists of a set of operations, whose order is constrained by a precedence relation, and
yet no two of its operations may be processed simultaneously; the objective is to
minimize the maximum completion time. (When the precedence relation of each job
is a chain, we have the job shop problem.) Give a polynomial-time algorithm for this
problem that delivers a solution of length C∗max +O(mµ3

max pmax).
13.7. (a) Consider the special case J|pi j = 1|Cmax. If one relaxes the capacity con-
straint of each machine, then there is a schedule of length µmax, in which each Oi j
starts at time i−1. Now, consider the schedules formed by delaying the start of each
J j by some amount t j, but then scheduling the operations without idle time; that is,
Oi j is started at time t j + i−1. Prove that, if each t j is chosen independently and uni-
formly at random in the range from 1 to Πmax, then with high probability, no more
than 4log(nµmax) operations are assigned to a machine at any time.
(b) Use this to give a randomized algorithm which, for every input, produces a sched-
ule of length O(log(nµmax)C∗max) and is expected to run in polynomial time.
(c) By using Theorem 13.1, improve the bound in (b) to O(log(mµmax)C∗max).

Notes
13.1. The disjunctive graph model for J||Cmax was proposed by Roy and Sussmann
(1964).

13.2. Approximation algorithms: computing good solutions. Haupt (1989) gives a
survey of priority-driven heuristics for the job shop problem. Osman and Laporte
(1996) and Aarts and Lenstra (1997) survey the literature on local search. Vaessens,
Aarts, and Lenstra (1996), Anderson and Potts (1997) and Jain and Meeran (1999)
give overviews of the application of local search to the job shop problem, including
computational comparisons between approaches.

Adams, Balas, and Zawack (1988) developed the shifting bottleneck heuristic.
Applegate and Cook (1991) proposed the variant that does not limit the number of
reoptimization cycles.

For specific implementations of local search for job shop scheduling, see Aarts,
Van Laarhoven, Lenstra, and Ulder (1994), Matsuo, Suh, and Sullivan (1988), Van
Laarhoven, Aarts, and Lenstra (1992), Dell’Amico and Trubian (1993), Taillard
(1994), Davis (1985), Falkenauer and Bouffouix (1991), Dorndorf and Pesch (1995),
and Ponnambalam, Aravindan, and Sreenivasa Rao (2001). Among the leading con-
tenders are guided local search with shifting bottleneck (Balas and Vazacopoulos,
1998), tabu search guided by shifting bottleneck (Pezzella and Merelli, 2000), and
tabu search with backtracking (Nowicki and Smutnicki, 1996).

13.3. Approximation algorithms: geometric results 21

13.3 Approximation algorithms: geometric results. Theorem 13.1 is due to Sev-
astyanov (1986).

