
Contents

14. Stochastic scheduling models 1
Michael L. Pinedo
14.1. Preliminaries 1
14.2. Stochastic dominance and classes of policies 4
14.3. Single machine models 8
14.4. Parallel machine models 15
14.5. Stochastic multi-operation models 25
14.6. Discussion 33

i

14
Stochastic scheduling models

Michael L. Pinedo
New York University

14.1. Preliminaries

Production environments in real life are subject to many sources of uncertainty.
These sources of uncertainty include machine breakdowns, unexpected releases of
high priority jobs, i.e., jobs with large weights, and the unpredictability of process-
ing times which are often not known in advance. Thus a good model of a scheduling
problem would need to address these forms of uncertainty.

The goal of this chapter is not to give an exhaustive overview of the field of
stochastic scheduling. It is rather meant to give an overview of stochastic counter-
parts of the specific deterministic models considered in the previous chapters and
draw some comparisons between deterministic models and stochastic models. Be-
cause of space limitations, we present at times the known results not in their full
generality, especially when an elaborate framework is needed to present such results.

The first section of this chapter goes over the notation, the classes of distributions,
the various forms of stochastic dominance, and the different classes of scheduling
policies.

In what follows, it is assumed that the distributions of the processing times, re-
lease dates and due dates are all known in advance, that is, at time zero. The actual
outcome or realization of a random processing time only becomes known upon the
completion of the processing; the realization of a release date or due date becomes
known only at the point in time at which it actually occurs.

For this chapter we adopt the following notation. Random variables are capi-
talized, while the actual realized values are in lower case. Job j has the following

1

2 14. Stochastic scheduling models

quantities of interest associated with it.

Xi j = the random processing time of job j on machine i ; if job j is only to be
processed on one machine, or if it has the same processing times on each
of the machines it may visit, the subscript i is omitted.

1/λi j = the mean or expected value of the random variable Xi j.
R j = the random release date of job j.
D j = the random due date of job j.
w j = the weight (or importance factor) of job j.

This notation is not completely analogous to the notation used for the earlier deter-
ministic models. The reason Xi j is used as the processing time in stochastic schedul-
ing is due to the fact that P usually refers to a probability. The weight w j, similar to
that in the deterministic models, is basically equivalent to the cost of keeping job j
in the system for one unit of time. In the queueing theory literature, which is closely
related to stochastic scheduling, c j is often used for the weight or cost of job j. The
c j and the w j are equivalent.

Distributions and density functions may take many forms. In what follows, for
obvious reasons, only distributions of nonnegative random variables are considered.

A random variable from a continuous time distribution may assume any real non-
negative value within one or more intervals. A distribution function is typically de-
noted by F(t) and its density function by f (t), i.e.,

F(t) = P(X ≤ t) =
∫ t

0
f (t)dt,

where

f (t) =
dF(t)

dt
provided the derivative exists. Furthermore,

F̄(t) = 1−F(t) = P(X ≥ t).

An important example of a continuous time distribution is the exponential dis-
tribution. The density function of an exponentially distributed random variable X
is

f (t) = λe−λt ,

and the corresponding distribution function is

F(t) = 1− e−λt ,

which is equal to the probability that X is smaller than t. The mean or expected value

14.1. Preliminaries 3

of X is
E(X) =

∫
∞

0
t f (t)dt =

∫
∞

0
t dF(t) =

1
λ
.

The parameter λ is called the rate of the exponential distribution.
Another important distribution is the deterministic distribution. A deterministic

random variable assumes a given value with probability one.
The completion rate c(t) of a continuous time random variable X with density

function f (t) and distribution function F(t) is defined as follows:

c(t) =
f (t)

1−F(t)
.

This completion rate is equivalent to the failure rate or hazard rate in reliability the-
ory. For an exponentially distributed random variable c(t) = λ for all t. That the
completion rate is independent of t is one of the reasons why the exponential dis-
tribution plays an important role in stochastic scheduling. This property is closely
related to the memoryless property of the exponential distribution, which implies
that the distribution of the remaining processing time of a job which already has
been processed for an amount of time t, is still exponentially distributed with rate
λ and therefore identical to its processing time distribution at the very start of its
processing.

Distributions can be classified based on their completion rate. An Increasing
Completion Rate (ICR) distribution is defined as a distribution whose completion
rate c(t) is increasing in t, while a Decreasing Completion Rate (DCR) distribution
is defined as a distribution whose completion rate is decreasing in t.

A subclass of the class of ICR distributions is the class of Erlang(k, λ) distribu-
tions. The Erlang(k, λ) distribution is defined as

F(t) = 1−
k−1

∑
r=0

(λt)re−λt

r!
.

The Erlang(k, λ) is a k-fold convolution of the exponential distribution and has a
mean k/λ. Thus, if k equals one, the distribution is an exponential with mean 1/λ and
if k and λ both go to ∞, then the distribution becomes a constant, i.e., a deterministic
distribution.

A subclass of the class of DCR distributions is the class of mixtures of exponen-
tials. A random variable X is distributed according to a mixture of exponentials if it
is exponentially distributed with rate λ j with probability p j, j = 1, . . . ,n, and

n

∑
j=1

p j = 1.

The exponential as well as the deterministic distribution are special cases of ICR
distributions. The exponential distribution is DCR as well as ICR. The class of DCR

4 14. Stochastic scheduling models

distributions contains other special distributions. For example, let X be distributed
as follows: with probability p it is exponentially distributed with rate p and with
probability 1− p it is zero. Clearly, E(X) = 1. When p is very close to zero this
distribution will be referred to as an Extreme Mixture of Exponentials (EME).

One way of measuring the variability of a distribution is through its coefficient
of variation Cv. The coefficient of variation Cv is defined as the variance of the
distribution divided by the square of the mean, i.e.,

Cv =
Var(X)

(E(X))2 =
E(X2)− (E(X))2

(E(X))2 .

It can be verified easily that the Cv of the deterministic distribution is zero and of the
exponential distribution one. The Cv of an extreme mixture of exponentials may be
arbitrarily large (it goes to ∞ when p goes to 0).

14.2. Stochastic dominance and classes of policies

In stochastic scheduling random variables often have to be compared with one an-
other. There are many ways in which comparisons between random variables can be
made. Comparisons based on certain properties are typically referred to as stochastic
dominance, i.e., a random variable dominates another with respect to some stochastic
property.

Definition 14.1. (i) The random variable X1 is said to be larger in expectation than
the random variable X2 if E(X1)≥ E(X2).

(ii) The random variable X1 is said to be stochastically larger than the random
variable X2 if

P(X1 > t)≥ P(X2 > t)

or
1−F1(t)≥ 1−F2(t)

for all t. This ordering is usually referred to as stochastic ordering and is denoted
by X1 ≥st X2.

(iii) The random variable X1 is almost surely larger than or equal to the random
variable X2 if P(X1 ≥ X2) = 1. This ordering implies that the density functions f1
and f2 may overlap on at most one point. This ordering is denoted by X1 ≥a.s. X2.

Ordering in expectation is the crudest form of stochastic dominance. Stochastic or-
dering implies ordering in expectation since

E(X1) =
∫

∞

0
t f1(t)dt =

∫
∞

0
(1−F1(t))dt =

∫
∞

0
F̄1(t)dt.

The three forms of stochastic dominance described above all imply that the random

14.2. Stochastic dominance and classes of policies 5

variables being compared, in general, have different means. They lead to the follow-
ing chain of implications.

almost surely larger =⇒ stochastically larger =⇒ larger in expectation

There are several other important forms of stochastic dominance that are based on
the variability of the random variables assuming that the means are equal. In the
subsequent definitions three such forms are presented. One of these is defined for
density functions which are symmetric around the mean, i.e.,

f (E(X)+ t) = f (E(X)− t)

for all 0≤ t ≤ E(X). Such a density function then has an upper bound of 2E(X).

Definition 14.2. (i) The random variable X1 is said to be larger than the random
variable X2 in the variance sense if the variance of X1 is larger than the variance of
X2.

(ii) The random variable X1 is said to be more variable than the random variable
X2 if ∫

∞

0
h(t)dF1(t)≥

∫
∞

0
h(t)dF2(t)

for all convex functions h. This ordering is denoted by X1 ≥cx X2.
(iii) The random variable X1 is said to be symmetrically more variable than the

random variable X2 if the density functions f1(t) and f2(t) are symmetric around the
same mean 1/λ and F1(t) ≥ F2(t) for 0 ≤ t ≤ 1/λ and F1(t) ≤ F2(t) for 1/λ ≤ t ≤
2/λ.

Again, the first form of stochastic dominance is somewhat crude. However, any two
random variables with equal means can be compared with one another in this way.

From the fact that the functions h(t) = t and h(t) =−t are convex, it follows that
if X1 is “more variable” than X2 then E(X1)≥ E(X2) and E(X1)≤ E(X2). So E(X1)
has to be equal to E(X2). From the fact that h(t) = t2 is convex it follows that Var(X1)
is larger than Var(X2). Variability ordering is a partial ordering, i.e., not every pair of
random variables with equal means can be ordered in this way. At times, variability
ordering is also referred to as ordering in the convex sense.

It can be shown easily that symmetrically more variable implies more variable in
the convex sense but not vice versa.

The forms of stochastic dominance described in Definition 15.2 lead to the fol-
lowing chain of implications:

symmetrically more variable =⇒ more variable =⇒ larger in variance

In stochastic scheduling, certain conventions have to be made which are not

6 14. Stochastic scheduling models

needed in deterministic scheduling. During the evolution of a stochastic process new
information becomes available continuously. Job completions and occurrences of
random release dates and due dates provide additional information that the decision-
maker may wish to take into account while scheduling the remaining jobs. The
amount of freedom the decision maker has in using this additional information is the
basis for the various classes of decision making policies. In this section four classes
of policies are defined.

The first class of policies is, in what follows, only used in scenarios where all the
jobs are available for processing at time zero; the machine environments considered
are the single machine, parallel machines and permutation flow shops.

Definition 14.3. Under a nonpreemptive static list policy the decision maker orders
the jobs at time zero according to a priority list. This priority list does not change
during the evolution of the process and every time a machine is freed the next job on
the list is selected for processing.

Under this class of policies the decision maker puts at time zero the n jobs in a list
(permutation) and the list does not change during the evolution of the process. In the
case of machines in parallel, every time a machine is freed, the job at the head of the
list is selected as the next one for processing. In the case of a permutation flow shop
the jobs are also put in a list in front of the first machine at time zero; every time the
first machine is freed the next job on the list is scheduled for processing. This class
of nonpreemptive static list policies is in what follows also referred to as the class of
permutation policies. This class of policies is in a sense similar to the static priority
rules often considered in deterministic models.

Example 14.4. Consider a single machine and three jobs. All three jobs are avail-
able at time zero. All three jobs have the same processing time distributions, which
is 2 with probability .5 and 8 with probability .5. The due date distributions are
the same, too. The due date is 1 with probability .5 and 5 with probability .5. If a
job is completed at the same time as its due date, it is considered to be on time. It
would be of interest to know the expected number of jobs completed in time under a
permutation policy.

Under a permutation policy the first job is completed in time with probability .25
(its processing time has to be 2 and its due date has to be 5); the second job is
completed in time with probability .125 (the processing times of the first and second
job have to be 2 and the due date of the second job has to be 5); the third job never
will be completed in time. The expected number of on-time completions is therefore
.375 and the expected number of tardy jobs is 3−0.375 = 2.625.

The second class of policies is a preemptive version of the first class and is in what
follows only used in scenarios where jobs are released at different points in time.

Definition 14.5. Under a preemptive static list policy the decision maker orders
the jobs at time zero according to a priority list. This ordering includes jobs with

14.2. Stochastic dominance and classes of policies 7

nonzero release dates, i.e., jobs which are to be released later. This priority list does
not change during the evolution of the process and at any point in time the job at the
top of the list of available jobs is the one to be processed on the machine.

Under this class of policies the following may occur. When there is a job release at
some time point and the job released is higher on the static list than the job currently
being processed, then the job being processed is preempted and the job released is
put on the machine.

Under the third and fourth class of policies, the decision-maker is allowed to
make his decisions during the evolution of the process. That is, every time he makes
a decision, he may take all information available at that time into account. The third
class of policies does not allow preemptions.

Definition 14.6. Under a nonpreemptive dynamic policy, every time a machine is
freed, the decision maker is allowed to determine which job goes next. His decision
at such a time point may depend on all the information available, e.g., the current
time, the jobs waiting for processing, the jobs currently being processed on other
machines and the amount of processing these jobs already have received on these
machines. However, the decision maker is not allowed to preempt; once a job begins
processing, it has to be completed without interruption.

Example 14.7. Consider the same problem as in Example 15.4. It is of interest to
know the expected number of jobs completed in time under a nonpreemptive dynamic
policy. Under a nonpreemptive dynamic policy the probability the first job is com-
pleted in time is again .25. With probability .5 the first job is completed at time 2.
With probability .25 the due dates of both remaining jobs already occurred at time 1
and there will be no more on-time completions. With probability .75 at least one of
the remaining two jobs has a due date at time 5. The probability that the second job
put on the machine is completed in time is 3/16 (the probability that the first job has
completion time 2 times the probability at least one of the two remaining jobs has
due date 5 times the probability that the second job has processing time 2). Again,
it is impossible to start the third job and complete it in time. The expected number
of on-time completions is therefore .4375 and the expected number of tardy jobs is
2.5625.

The last class of policies is a preemptive version of the third class.

Definition 14.8. Under a preemptive dynamic policy, at any point in time, the de-
cision maker is allowed to select the jobs to be processed on the machines. His
decision at a time point may depend on all information available and may require
preemptions.

Example 14.9. Consider again the problem of Example 15.4. It is of interest to know
the expected number of jobs completed in time under a preeemptive dynamic policy.
Under a preemptive dynamic policy, the probability that the first job is completed

8 14. Stochastic scheduling models

in time is again .25. This first job is either taken off the machine at time 1 (with
probability .5) or at time 2 (with probability .5). The probability the second job put
on the machine is completed in time is 3/8, since the second job enters the machine
either at time 1 or at time 2 and the probability of being completed on time is 0.75
times the probability it has processing time 2, which equals 3/8 (regardless of when
the first job was taken off the machine). However, unlike under the nonpreeemptive
dynamic policy, the second job put on the machine is taken off with probability .5
at time 3 and with probability 0.5 at time 4. So now there is actually a chance that
the third job that goes on the machine will be completed in time. The probability the
third job is completed in time is 1/16 (the probability that the due date of the first
job is 1 (=.5) times the probability that the due dates of both remaining jobs are 5
(=.25) times the probability that the processing time of the third job is 2 (=.5)). The
total expected number of on-time completions is therefore 11/16 = 0.6875 and the
expected number of tardy jobs is 2.3125.

It is clear that the optimal preemptive dynamic policy leads to the best possible value
of the objective as in this class of policies the decision maker has the most informa-
tion available and the largest amount of freedom. It is also clear that if all jobs are
present at time zero and the environment is either a bank of machines in parallel or a
permutation flow shop, then the optimal nonpreemptive dynamic policy is at least as
good as the optimal nonpreemptive static list policy (see Examples 15.4 and 15.7).

There are several forms of minimization in stochastic scheduling. Whenever an
objective function has to be minimized, it should be specified in what sense the
objective is to be minimized. The crudest form of optimization is in the expecta-
tion sense, e.g., one wishes for example to minimize the expected makespan, that
is E(Cmax) and find a policy under which the expected makespan is smaller than
the expected makespan under any other policy. A stronger form of optimization is
optimization in the stochastic sense. If a schedule or policy minimizes Cmax stochas-
tically, the makespan under the optimal schedule or policy is stochastically less than
the makespan under any other schedule or policy. Stochastic minimization, of course,
implies minimization in expectation. In the subsequent sections the objective is usu-
ally minimized in expectation. Frequently, however, the policies that minimize the
objective in expectation minimize the objective stochastically as well.

14.3. Single machine models

Stochastic models, especially with exponential processing times, may often contain
more structure than their deterministic counterparts and lead to results which, at first
sight, may seem surprising. Models that are NP-hard in a deterministic setting often
allow a simple priority policy to be optimal in a stochastic setting.

In this section we first consider single machine models with arbitrary process-
ing times in a nonpreemptive setting. Then we analyze models with exponentially
distributed processing times.

14.3. Single machine models 9

For a number of stochastic problems, finding the optimal policy is equivalent to
solving a deterministic scheduling problem. Usually, when such an equivalence rela-
tionship exists, the deterministic counterpart can be obtained by replacing all random
variables with their means. The optimal schedule for the deterministic problem then
minimizes the objective of the stochastic version in expectation.

One such case is when the objective in the deterministic counterpart is linear in
p(j) and w(j), where p(j) and w(j) denote the processing time and weight of the job
in the jth position in the sequence.

This observation implies that it is easy to find the optimal permutation schedule
for the stochastic counterpart of 1 || ∑w jC j, when the processing time of job j is X j,
from an arbitrary distribution Fj, and the objective is E(∑w jC j). This problem leads
to the stochastic version of the WSPT rule, which sequences the jobs in decreasing
order of the ratio w j/E(X j) or λ jw j. In what follows this rule is referred to as the
Weighted Shortest Expected Processing Time first (WSEPT) rule or as the “λw” rule.

Theorem 14.10. The WSEPT rule minimizes the expected sum of the weighted com-
pletion times in the class of nonpreemptive static list policies as well as in the class
of nonpreemptive dynamic policies.

Proof. The proof for nonpreemptive static list policies is similar to the proof for the
deterministic counterpart of this problem. The proof is based on an adjacent pairwise
interchange argument identical to the one used for the deterministic counterpart of
this problem. The only difference is that the p j’s in that proof have to be replaced by
the E(X j)’s.

The proof for nonpreemptive dynamic policies needs an additional argument. It
is easy to show that it is true for n = 2 (again an adjacent pairwise interchange argu-
ment). Now consider three jobs. It is clear that the last two jobs have to be sequenced
according to the λw rule. These last two jobs will be sequenced in this order inde-
pendent of what happens during the processing of the first job. There are then three
sequences that may occur: each of the three jobs starting first and the remaining two
jobs sequenced according to the λw rule. A simple interchange argument between
the first job and the second shows that all three jobs have to sequenced according
to the λw rule. It can be shown by induction that all n jobs have to be sequenced
according to the λw rule in the class of nonpreemptive dynamic policies: suppose it
is true for n−1 jobs. If there are n jobs it follows from the induction hypothesis that
the last n− 1 jobs have to be sequenced according to the λw rule. Suppose the first
job is not the job with the highest λ jw j. Interchanging this job with the second job in
the sequence, i.e., the job with the highest λ jw j, leads to an decrease in the expected
value of the objective function. This completes the proof of the theorem. 2

It can be shown that the nonpreemptive WSEPT rule is also optimal in the class of
preemptive dynamic policies when all n processing time distributions are ICR. This
follows from the fact that any time when a preemption is contemplated, the w j/E(X j)
ratio of the job currently on the machine is actually higher than it was when first put
on the machine (the expected remaining processing time of an ICR job decreases as

10 14. Stochastic scheduling models

processing goes on). If the ratio of the job was the highest among the remaining jobs
when it was put on the machine, it remains the highest while it is being processed.

The same cannot be said about jobs with DCR distributions. The expected remain-
ing processing time then increases while a job is being processed. So the weight di-
vided by the expected remaining processing time of a job, while it is being processed,
decreases with time. Preemptions may be thus advantageous with DCR processing
times.

Example 14.11. Consider n jobs with the processing time X j distributed as follows.
The processing time X j is 0 with probability p j and it is distributed according to
an exponential with rate λ j with probability 1− p j. Clearly, this distribution is
DCR as it is a mixture of two exponentials with rates ∞ and λ j. The objective
to be minimized is the expected sum of the weighted completion times. The optimal
preemptive dynamic policy is clear. All n jobs have to be tried out for a split second at
time zero, in order to determine which jobs have zero processing times. If a job does
not have zero processing time, it is taken immediately off the machine. The jobs with
zero processing times are then all completed at time zero. After determining in this
way which jobs have nonzero processing times, these remaining jobs are sequenced
in decreasing order of λ jw j.

The remaining part of this section focuses on due date related problems. Consider
the stochastic counterpart of 1 || Lmax with processing times having arbitrary dis-
tributions and deterministic due dates. The objective is to minimize the expected
maximum lateness.

Theorem 14.12. The EDD rule minimizes expected maximum lateness for arbitrar-
ily distributed processing times and deterministic due dates in the class of nonpre-
emptive static list policies, the class of nonpreemptive dynamic policies and the class
of preemptive dynamic policies.

Proof. It is clear that the EDD rule minimizes the maximum lateness for any real-
ization of processing times (after conditioning on the processing times, the problem
is basically a deterministic problem and the results for the deterministic counterpart
of this problem apply). If the EDD rule minimizes the maximum lateness for any
realization of processing times then it minimizes the maximum lateness also in ex-
pectation (it actually minimizes the maximum lateness with probability 1). 2

It can be shown that the EDD rule not only minimizes

E(Lmax) = E(max(L1, . . . ,Ln)),

but also max(E(L1), . . . ,E(Ln)). It is even possible to develop an algorithm for a
stochastic counterpart of the more general 1 | prec | hmax problem. In this problem
the objective is to minimize the maximum of the n expected costs incurred by the n

14.3. Single machine models 11

jobs, i.e., the objective is to minimize

max
(

E(h1(C1)), . . . ,E(hn(Cn))
)
,

where h j(C j) is the cost incurred by job j being completed at C j. The cost function
h j is nondecreasing in the completion time C j. The algorithm is a modified version
of the algorithm for the deterministic counterpart of this problem. The version here
is also a backward procedure. Whenever one has to select a schedulable job for
processing, it is clear that the distribution of its completion time is the convolution of
the processing times of the jobs that have not yet been scheduled. Let fJc denote the
density function of the convolution of the processing times of the set of unscheduled
jobs Jc. Job j∗ is then selected to be processed last among the set of jobs Jc if∫

∞

0
h j∗(t) fJc(t)dt = min

j∈Jc

∫
∞

0
h j(t) fJc(t)dt.

The L.H.S. denotes the expected value of the penalty for job j∗ if it is the last job
to be scheduled among the jobs in Jc. This rule replaces one step in the algorithm
for the deterministic counterpart of this problem. The proof of optimality is similar
to the proof of optimality in the deterministic case. However, implementation of the
algorithm is significantly more cumbersome as the evaluation of the integrals may
not be easy.

We now discuss due date models with exponentially distributed processing times.
Consider the stochastic version of 1 | d j = d | ∑w jU j with job j having an expo-
nentially distributed processing time with rate λ j and a deterministic due date d.
Recall that the deterministic counterpart is equivalent to the knapsack problem. The
objective to be minimized is the expected weighted number of tardy jobs.

Theorem 14.13. The WSEPT rule minimizes the expected weighted number of tardy
jobs in the classes of nonpreemptive static list policies, nonpreemptive dynamic poli-
cies and preemptive dynamic policies.

Proof. First the optimality of the WSEPT rule in the class of nonpreemptive static
list policies is shown. Assume the machine is free at some time t and two jobs,
with weights w1 and w2 and processing times X1 and X2, remain to be processed.
Consider first the sequence 1,2. The probability that both jobs are late is equal to the
probability that X1 is larger than d−t, which is equal to exp(−λ(d−t)). The penalty
for being late is then equal to w1 +w2. The probability that only the second job is
late corresponds to the event where the processing time of the first job is x1 < d− t
and the sum of the processing times x1 + x2 > d− t. Evaluation of the probability of
this event, through conditioning on X1 (that is X1 = x), yields

P(X1 < d− t,X1 +X2 > d− t) =
∫ d−t

0
e−λ2(d−t−x)

λ1e−λ1xdx.

If E(∑wU(1,2)) denotes the expected value of the penalty due to jobs 1 and 2, with

12 14. Stochastic scheduling models

job 1 processed first, then

E
(
∑wU(1,2)

)
= (w1 +w2)e−λ1(d−t)+w2

∫ d−t

0
e−λ2(d−t−x)

λ1e−λ1xdx.

The value of the objective function under sequence 2,1 can be obtained by inter-
changing the subscripts in the expression above. Straightforward computation yields

E
(
∑wU(1,2)

)
−E

(
∑wU(2,1)

)
=

(λ2w2−λ1w1)
e−λ1(d−t)− e−λ2(d−t)

λ2−λ1
.

It immediately follows that the difference in the expected values is positive if and
only if λ2w2 > λ1w1. Since this result holds for all values of d and t, any permu-
tation schedule that does not sequence the jobs in decreasing order of λ jw j can be
improved by swapping two adjacent jobs, where the first has a lower λw value than
the second. This completes the proof of optimality for the class of nonpreemptive
static list policies.

Induction can be used to show optimality in the class of nonpreemptive dynamic
policies. It is immediate that this is true for 2 jobs (it follows from the same pair-
wise interchange argument for optimality in the class of nonpreemptive static list
policies). Assume that it is true for n− 1 jobs. In the case of n jobs this implies
that the scheduler after the completion of the first job will, because of the induction
hypothesis, revert to the WSEPT rule among the remaining n− 1 jobs. It remains
to be shown that the scheduler has to select the job with the highest λ jw j as the
first one to be processed. Suppose the decision-maker selects a job which does not
have the highest λ jw j. Then, the job with the highest value of λ jw j is processed
second. Changing the sequence of the first two jobs decreases the expected value of
the objective function according to the pairwise interchange argument used for the
nonpreemptive static list policies.

To show that WSEPT is optimal in the class of preemptive dynamic policies, sup-
pose a preemption is contemplated at some point in time. The remaining processing
time of the job then on the machine is exponentially distributed with the same rate
as it had at the start of its processing (because of the memoryless property of the
exponential). Since the decision to put this job on the machine did not depend on the
value of t at that moment or on the value of d, the same decision remains optimal
at the moment a preemption is contemplated. A nonpreemptive policy is therefore
optimal in the class of preemptive dynamic policies. 2

This result is in marked contrast with the result for its deterministic counterpart, i.e.,
the knapsack problem, which is NP-hard.

The WSEPT rule does not necessarily yield an optimal schedule when processing
time distributions are not all exponential.

14.3. Single machine models 13

Theorem 14.13 can be generalized to consider breakdown and repair. Suppose the
machine goes through “uptimes”, when it is functioning and “downtimes” when it is
being repaired. This breakdown and repair may form an arbitrary stochastic process.
Theorem 14.13 also holds under these more general conditions since no part of the
proof depends on the remaining time till the due date.

Theorem 14.13 can also be generalized to include different release dates with
arbitrary distributions. Assume a finite number of releases after time 0, say n∗. It is
clear from the results presented above that at the time of the last release the WSEPT
policy is optimal. This may actually imply that the last release causes a preemption
(if, at that point in time, the job released is the job with the highest λ jw j ratio in the
system). Consider now the time-epoch of the second last release. After this release
a preemptive version of the WSEPT rule is optimal. To see this, disregard for a
moment the very last release. All the jobs in the system at the time of the second
to last release (not including the last release) have to be sequenced according to
WSEPT; the last release may in a sense be considered a random “downtime”. From
the previous results it follows that all the jobs in the system at the time of the second
last release should be scheduled according to preemptive WSEPT , independent of
the time period during which the last release is processed. Proceeding inductively
towards time zero it can be shown that a preemptive version of WSEPT is optimal
with arbitrarily distributed releases in the classes of preemptive static list policies
and preemptive dynamic policies.

The WSEPT rule also turns out to be optimal for other objectives as well. Con-
sider the stochastic counterpart of 1 | d j = d | ∑w jTj with job j again exponentially
distributed with rate λ j. All n jobs are released at time 0. The objective is to mini-
mize the sum of the expected weighted tardinesses.

Theorem 14.14. The WSEPT rule minimizes the expected sum of the weighted tar-
dinesses in the classes of nonpreemptive static list policies, nonpreemptive dynamic
policies and preemptive dynamic policies.

Proof. The objective w jTj can be approximated by a sum of an infinite sequence of
w jU j unit penalty functions, i.e.,

w jTj =
∞

∑
l=0

w jU jl .

The first unit penalty U j0 corresponds to a due date d, the second unit penalty U j1
corresponds to a due date d + ε, the third corresponds to a due date d + 2ε and so
on. From Theorem 14.13 it follows that λw rule minimizes each one of these unit
penalty functions. If the rule minimizes each one of these unit penalty functions, it
also minimizes their sum. 2

This theorem can be generalized along the lines of Theorem 14.13 to include arbitrary
breakdown and repair processes and arbitrary release processes, provided all jobs
have due date d (including those released after d).

14 14. Stochastic scheduling models

Actually, a generalization in a slightly different direction is also possible. Con-
sider the stochastic counterpart of the problem 1 || ∑w jh(C j). In this model the jobs
have no specific due dates, but are all subject to the same cost function h. The objec-
tive is to minimize E(∑w jh(C j)). Clearly, ∑w jh(C j) is a simple generalization of
∑w jTj when all jobs have the same due date d. The function h can again be approx-
imated by a sum of an infinite sequence of unit penalties, the only difference being
that the due dates of the unit penalties are not necessarily equidistant as in the proof
of Theorem 14.14.

Consider now a stochastic counterpart of the problem 1 || ∑w jh j(C j), with each
job having a different cost function. Again, all jobs are released at time 0. The
objective is to minimize the total expected cost. The following ordering among cost
functions is of interest: a cost function h j is said to be steeper than a cost function
hk if

dh j(t)
dt

≥ dhk(t)
dt

for every t, provided the derivatives exist. This ordering is denoted by h j ≥s hk. If
the functions are not differentiable for every t, the steepness ordering requires

h j(t +δ)−h j(t)≥ hk(t +δ)−hk(t),

for every t and δ. Note that a cost function being steeper than another does not
necessarily imply that it is higher.

Theorem 14.15. If λ jw j ≥ λkwk⇐⇒ h j ≥s hk, then the WSEPT rule minimizes the
total expected cost in the classes of nonpreemptive static list policies, nonpreemptive
dynamic policies and preemptive dynamic policies.

Proof. The proof follows from the fact that any increasing cost function can be ap-
proximated through the proper addition of a (possibly infinite) number of unit penal-
ties at different due dates. If two cost functions, which may be at different levels, go
up in the same way over an interval [t1, t2], then a series of identical unit penalties go
into effect within that interval for both jobs. It follows from Theorem 14.13 that the
jobs have to be sequenced in decreasing order of λw in order to minimize the total
expected penalties due to these unit penalties. If one cost function is steeper than
another in a particular interval, then the steeper cost function has one or more unit
penalties going into effect within this interval, which the other cost function has not.
To minimize the total expected cost due to these unit penalties, the jobs have to be
sequenced again in decreasing order of λw. 2

The results in this section indicate that scheduling problems with exponentially dis-
tributed processing times allow for more elegant structural results than their deter-
ministic counterparts. The deterministic counterparts of most of the models dis-
cussed in this section are NP-hard. It is intuitively acceptable that a deterministic
problem may be NP-hard while its counterpart with exponentially distributed pro-
cessing times allows for a very simple policy to be optimal. The reason is the fol-

14.4. Parallel machine models 15

lowing: all data being deterministic (that is, perfect data) makes it very hard for the
scheduler to optimize. In order to take advantage of all the information available
the scheduler has to spend an inordinately long time doing the optimization. On
the other hand when the processing times are stochastic, the data are fuzzier. The
scheduler, with less data at hand, will spend less time performing the optimization.
The fuzzier the data, the more likely a simple priority rule minimizes the objective
in expectation. Expectation is akin to optimizing for the average case.

14.4. Parallel machine models

This section deals with parallel machine models that are stochastic counterparts of
the models discussed in Chapter 7–9. The body of knowledge in the stochastic case
is considerably less extensive than in the deterministic case.

The results focus mainly on the expected makespan, the total expected completion
time and the expected number of tardy jobs. In what follows the number of machines
is usually limited to two. Some of the proofs can be extended to more than two
machines, but such extensions usually require more elaborate notation. Since these
extensions would not provide any additional insight, they are not presented here.
The proofs for some of the structural properties of the stochastic models tend to be
more involved than the proofs for the corresponding properties of their deterministic
counterparts.

The first part of this section deals with nonpreemptive models; the results in this
part are obtained through interchange techniques. The second part focuses on pre-
emptive models; the results in this part are obtained through dynamic programming
approaches. The third part deals with due date related models.

The first part of this section considers optimal policies in the class of nonpreemp-
tive static list policies and in the class of nonpreemptive dynamic policies. Since
preemptions are not allowed, the main technique for determining optimal policies is
based on pairwise interchanges. The exponential distribution is considered in detail
as its special properties makes the analysis relatively easy.

Consider two machines in parallel and n jobs. The processing time of job j is
equal to the random variable X j, that is exponentially distributed with rate λ j. The
objective is to minimize E(Cmax). Note that this problem is a stochastic counterpart
of P2 || Cmax, which is known to be NP-hard. However, in Section 15.3 it already
became clear that scheduling environments with exponentially distributed processing
times often have structural properties which their deterministic counterparts do not
have. It turns out that this is also the case with machines in parallel.

A nonpreemptive static list policy is followed. The jobs are put into a list and at
time zero the two jobs at the top of the list begin processing on the two machines.
When a machine becomes free the next job on the list is put on the machine. It is not
specified in advance on which machine each job will be processed, nor is it known a
priori which job will be the last one to be completed.

Let Z1 denote the time when the second to last job is completed, i.e., the first

16 14. Stochastic scheduling models

time a machine becomes free with no jobs on the list to replace it. At this time the
other machine is still processing its last job. Let Z2 denote the time that the last
job is completed on the other machine (i.e., Z2 equals the makespan Cmax). Let the
difference D be equal to Z2− Z1. It is clear that the random variable D depends
on the schedule. It is easy to see that minimizing E(D) is equivalent to minimizing
E(Cmax). This follows from

Z1 +Z2 = 2Cmax−D =
n

∑
j=1

X j,

which is a constant independent of the schedule.
In what follows, a slightly more general two-machine problem is considered for

reasons that will become clear later. It is assumed that one of the machines is not
available at time zero and becomes available only after a random time X0, distributed
exponentially with rate λ0. The random variable X0 may be thought of as the pro-
cessing time of an additional job which takes precedence and must go first. Let
D(X0,X1,X2, . . . ,Xn) denote the random variable D, under the assumption that, at
time zero, a job with remaining processing time X0 is being processed on one ma-
chine and a job with processing time X1 is being started on the other. When one of
the two machines is freed a job with processing time X2 is started, and so on. The
next lemma, which we present without proof, examines the effect on D of changing
a schedule by swapping consecutive jobs 1 and 2.

Lemma 14.16. For any λ0 and for λ1 = min(λ1,λ2, . . . ,λn)

E(D(X0,X1,X2, . . . ,Xn))≤ E(D(X0,X2,X1, . . . ,Xn)).

This lemma constitutes a crucial element in the proof of the following theorem.

Theorem 14.17. The LEPT rule minimizes the expected makespan in the class of
nonpreemptive static list policies when there are two machines in parallel and expo-
nentially distributed processing times.

Proof. By contradiction. Suppose that a different rule is optimal. Suppose that
according to this presumed optimal rule, the job with the longest expected processing
time is not scheduled for processing either as the first or the second job. (Note that
the first and second job are interchangeable as they both start at time zero). Then
an improvement can be obtained by performing a pairwise interchange between this
longest job and the job immediately preceding this job in the schedule, as by Lemma
14.16 this reduces the expected difference between the completion times of the last
two jobs. Through a series of interchanges it can be shown that the longest job has to
be one of the first two jobs in the schedule. In the same way it can be shown that the
second longest job has to be among the first two jobs as well. The third longest job
can be moved into the third position to improve the objective, and so on. With each

14.4. Parallel machine models 17

interchange the expected difference, and thus the expected makespan, are reduced.
2

The approach used in proving the theorem is basically an adjacent pairwise inter-
change argument. However, this pairwise interchange argument is not identical to the
pairwise interchange arguments used in single machine scheduling. In pairwise in-
terchange arguments applied to single machine problems, no restrictions were made
on the relation between the two jobs to be interchanged and those that come after
them. In Lemma 14.16 jobs not involved in the interchange have to satisfy a special
condition, viz., one of the two jobs being interchanged must have a larger expected
processing time than all jobs following it. Requiring such a condition has certain
implications. When no special conditions are required, an adjacent pairwise inter-
change argument actually yields two results: it shows that one schedule minimizes
the objective while the reverse schedule maximizes that same objective. With a spe-
cial condition like the one in Lemma 14.16 the argument works only in one direction.
It actually can be shown that the SEPT rule does not always maximize E(D) among
nonpreemptive static list policies.

The result presented in Theorem 14.17 differs from the results obtained for its
deterministic counterpart considerably. One difference is the following: minimizing
makespan in a deterministic setting requires only an optimal partition of the n jobs
over the two machines. After the allocation has been determined, the set of jobs
allocated to a specific machine may be sequenced in any order. With exponential
processing times, a sequence is determined in which the jobs are to be released
in order to minimize the expected makespan. No deviation is allowed from this
sequence and it is not specified at time zero how the jobs will be partitioned between
the machines. This depends on the evolution of the process.

In contrast with the results of Section 15.3, which do not appear to hold for dis-
tributions other than the exponential, the LEPT rule does minimize the expected
makespan for other distributions as well.

Consider the case where the processing time of job j is distributed according to
a mixture of two exponentials, i.e., with probability p1 j according to an exponential
with rate λ1 and with probability p2 j (= 1− p1 j) according to an exponential with
rate λ2. Assume λ1 < λ2. So

P(X j > t) = p1 je−λ1t + p2 je−λ2t .

This distribution can be described as follows: when job j is put on the machine a
(biased) coin is tossed. Dependent upon the outcome of the toss the processing time
of job j is either exponential with rate λ1 or exponential with rate λ2. After the rate
has been determined this way the distribution of the remaining processing time of
job j does not change while the job is being processed. So each processing time is
distributed according to one of the two exponentials with rates λ1 and λ2.

The subsequent lemma again examines the effect on D of an interchange between
two consecutive jobs 1 and 2 on two machines in parallel. Assume again that X0

18 14. Stochastic scheduling models

denotes the processing time of a job 0 with an exponential distribution with rate λ0.
This rate λ0 may be different from either λ1 or λ2.

Lemma 14.18. For arbitrary λ0, if p11 ≥ p12, i.e., E(X1)≥ E(X2), then

E(D(X0,X1,X2, . . . ,Xn))≤ E(D(X0,X2,X1, . . . ,Xn)).

Note that there are no conditions on λ0 ; the rate λ0 may or may not be equal to either
λ1 or λ2. Through this lemma the following theorem can be shown rather easily.

Theorem 14.19. The LEPT rule minimizes the expected makespan in the class of
nonpreemptive static list policies when there are two machines in parallel and when
the processing times are distributed according to a mixture of two exponentials with
rates λ1 and λ2.

Proof. Any permutation schedule can be transformed into the LEPT schedule
through a series of adjacent pairwise interchanges between a longer job and a shorter
job immediately preceding it. With each interchange E(D) decreases because of
Lemma 14.18. 2

Showing that LEPT minimizes the expected makespan can be done in this case with-
out any conditions on the jobs that are not part of the interchange. This is in contrast
with Theorem 14.17, where the jobs following the jobs in the interchange had to be
smaller than the largest job involved in the pairwise interchange. The additional con-
dition requiring the other expected processing times to be smaller than the expected
processing time of the larger of the two jobs in the interchange, is not required in this
case.

Theorem 14.19 can be extended to include mixtures of three exponentials, with
rates λ1, λ2 and ∞. The next example also shows that the LEPT rule does not neces-
sarily minimize the expected makespan.

Example 14.20. Let p1 j denote the probability job j is exponentially distributed
with rate λ1 and p2 j the probability it is distributed with rate λ2. Assume λ1 <
λ2. The probability that the processing time of job j is zero is p0 j = 1− p1 j− p2 j.
Through similar arguments as the ones used in Lemma 14.18 and Theorem 14.19 it
can be shown that in order to minimize the expected makespan the jobs in the optimal
nonpreemptive static list policy have to be ordered in decreasing order of p1 j/p2 j.
The jobs with the zero processing times again do not play a role in the schedule.
Clearly, the optimal sequence is not necessarily LEPT.

The following example is a continuation of the previous example and an illustration
of the Largest Variance first (LV) rule.

14.4. Parallel machine models 19

Example 14.21. Consider the special case of the previous example with

1
λ1

= 2

and
1
λ2

= 1.

Let

p0 j = a j

p1 j = a j

p2 j = 1−2a j

So
E(X j) =

p1 j

λ1
+

p2 j

λ2
= 1,

for all j and
Var(X j) = 1+4a j.

From the previous example it follows that sequencing the jobs in decreasing order of
p1 j/p2 j minimizes the expected makespan. This rule is equivalent to scheduling the
jobs in decreasing order of a j/(1− 2a j). As 0 ≤ a j ≤ 1/2, scheduling the jobs in
decreasing order of a j/(1− 2a j) is equivalent to scheduling in decreasing order of
a j, which in turn is equivalent to the Largest Variance first rule.

The methodology used in proving that LEPT is optimal for the expected makespan
on two machines does not easily extend to problems with more than two machines or
problems with other processing time distributions. Consider the following general-
ization of this approach for m machines. Let Z1 denote the time that the first machine
becomes idle with no jobs waiting for processing, Z2 the time the second machine
becomes idle, and so on and let Zm denote the time the last machine becomes idle.
Clearly Zm equals the makespan. Let

Di = Zi+1−Zi i = 1, . . . ,m−1.

From the fact that the sum of the processing times is

n

∑
j=1

X j =
m

∑
i=1

Zi = mCmax−D1−2D2−·· ·− (m−1)Dm−1,

independent of the schedule, it follows that minimizing the makespan is equivalent
to minimizing

m−1

∑
i=1

iDi.

20 14. Stochastic scheduling models

A limited number of processing time distributions can be handled this way. For
example, the settings of Theorem 14.19 and Examples 14.20 and 14.21 can be ex-
tended relatively easily through this approach. However, the scenario of Theorem
14.17 cannot be extended that easily.

So far only the class of nonpreemptive static list policies has been considered in
this section. It turns out, that most optimal policies in the class of nonpreemptive
static list policies are also optimal in the classes of nonpreemptive dynamic policies
and preemptive dynamic policies. The proof that a nonpreemptive static list policy is
optimal in these other two classes of policies is based on induction arguments very
similar to the ones described in the second and third parts of the proof of Theorem
14.13.

In what follows an entirely different approach is presented which first proves op-
timality in the class of preemptive dynamic policies. As the optimal policy is a
nonpreemptive static list policy, the policy is also optimal in the the classes of non-
preemptive dynamic policies and nonpreemptive static list policies.

Only the expected makespan has been considered so far in this section. The to-
tal expected completion time E(∑C j) in a nonpreemptive setting is a slightly more
difficult objective to deal with than the expected makespan. Indeed, an approach
similar to the one used to show that LEPT minimizes the expected makespan for
exponential processing times, has not been found to show that SEPT minimizes the
total expected completion time. However, if the processing times are distributed as
in Theorem 14.19, it can be shown that SEPT minimizes the expected flow time and
if the processing times are distributed as in Example 14.21 it can be shown that LV
minimizes the expected flow time.

Pairwise interchange arguments are basically geared to determine optimal policies
in the class of nonpreemptive static list policies. After determining an optimal non-
preemptive static list policy it can often be argued that this policy is also optimal in
the class of nonpreemptive dynamic policies and possibly in the class of preemptive
dynamic policies.

In what follows an alternative proof for Theorem 14.17 is presented. The approach
is entirely different. A dynamic programming type proof is constructed within the
class of preemptive dynamic policies. After obtaining the result that the nonpre-
emptive LEPT policy minimizes the expected makespan in the class of preemptive
dynamic policies, it is concluded that it is also optimal in the class of nonpreemptive
dynamic policies as well as in the class of nonpreemptive static list policies.

The approach can be used for proving that LEPT minimizes the expected makespan
for m machines in parallel. It will be illustrated for 2 machines in parallel since the
notation is much simpler.

Suppose λ1 ≤ λ2 ≤ ·· · ≤ λn. Let V (J) denote the expected value of the minimum
remaining time needed (that is, under the optimal policy) to finish all jobs given that
all the jobs in the set J = j1, . . . , jl already have been completed; if J = /0, then V (J)
is simply denoted by V . Let V ∗(J) denote the same time quantity under the LEPT
policy. Similarly, V ∗ denotes the expected value of the remaining completion time
under LEPT when no job has yet been completed.

14.4. Parallel machine models 21

Theorem 14.22. The nonpreemptive LEPT policy minimizes the expected makespan
in the class of preemptive dynamic policies.

Proof. The proof is by induction on the number of jobs. Suppose that the result
is true when there are less than n jobs. It has to be shown that it is also true when
there are n jobs. That is, a policy which at time 0 (when there are n jobs waiting
for processing) does not act according to LEPT but at the first job completion (when
there are n− 1 jobs remaining to be processed) switches over to LEPT results in a
larger expected makespan than when LEPT is adopted immediately from time zero
on.

Conditioning on the first job completion yields

V = min
j,k

(1
λ j +λk

+
λ j

λ j +λk
V ∗({ j})+ λk

λ j +λk
V ∗({k})

)
.

The expected time until the first job completion is the first term on the R.H.S.; the
second (third) term is equal to the probability of job j (k) being the first job to be
completed, multiplied by the expected remaining time needed to complete the n−1
remaining jobs under LEPT. This last equation is equivalent to

0 = min
j,k

(
1+λ j

(
V ∗({ j})−V ∗

)
+λk

(
V ∗({k})−V ∗

)
+(λ j +λk)

(
V ∗−V

))
.

Since λ1 and λ2 are the two smallest λ j values and supposedly V ∗ ≥ V the fourth
term on the R.H.S. is minimized by { j,k} = {1,2}. Hence to show that LEPT is
optimal it suffices to show that { j,k}= {1,2} also minimizes the sum of the second
and third term. In order to simplify the presentation let

A j = λ j

(
V ∗({ j})−V ∗

)
and

D jk = A j−Ak.

In order to show that

λ j

(
V ∗({ j})−V ∗

)
+λk

(
V ∗({k})−V ∗

)
= A j +Ak

is minimized by { j,k}= {1,2}, it suffices to show that λ j < λk implies A j ≤ Ak or,
equivalently, D jk ≤ 0. To prove that D jk ≤ 0 is done in what follows by induction.

Throughout the remaining part of the proof V ∗, A j and D jk are considered func-
tions of the random variables λ1, . . . ,λn. Define A j(J) and D jk(J), assuming jobs j
and k are not in J, in the same way as A j and D jk, e.g.,

A j(J) = λ j

(
V ∗(J∪{ j})−V ∗(J)

)
.

22 14. Stochastic scheduling models

Before proceeding with the induction a number of identities have to be estab-
lished. If j and k are the two smallest jobs not in the set J, then jobs j and k will,
under LEPT, be processed first. Conditioning on the first job completion results in
the identity

V ∗(J) =
1

λ j +λk
+

λ j

λ j +λk
V ∗(J∪{ j})+ λk

λ j +λk
V ∗(J∪{k})

or
(λ j +λk)V ∗(J) = 1+λ jV ∗(J∪{ j})+λkV ∗(J∪{k}).

Similarly,

(λ1 +λ2 +λ3)A1 = λ1(λ1 +λ2 +λ3)V ∗({1})−λ1(λ1 +λ2 +λ3)V ∗

= λ1

(
1+λ1V ∗({1})+λ2V ∗({1,2})+λ3V ∗({1,3})

)
−λ1

(
1+λ1V ∗({1})+λ2V ∗({2})+λ3V ∗

)
= λ1

(
λ3V ∗({1,3})−λ3V ∗({1})

)
+λ2

(
λ1V ∗({1,2})−λ1V ∗({2})

)
+λ3A1

or
(λ1 +λ2)A1 = λ1A3({1})+λ2A1({2}).

The following identities can be established in the same way:

(λ1 +λ2)A2 = λ1A2({1})+λ2A3({2})

and
(λ1 +λ2)A j = λ1A j({1})+λ2A j({2}),

for j = 3, . . . ,n. Thus, with D12 = A1−A2, it follows that

D12 =
λ1

λ1 +λ2
D32({1})+

λ2

λ1 +λ2
D13({2}),

and

D2 j =
λ1

λ1 +λ2
D2 j({1})+

λ2

λ1 +λ2
D3 j({2}),

for j = 3, . . . ,n.
Assume now as induction hypothesis that if λ j < λk, and λ1 ≤ ·· · ≤ λn, then

D jk ≤ 0

and
dD12

dλ1
≥ 0.

14.4. Parallel machine models 23

In the remaining part of the proof, these two inequalities are shown by induction on
n. When n = 2,

D jk =
λ j−λk

λ j +λk

and the two inequalities can be established easily.
Assume that the two inequalities of the induction hypothesis hold when there are

less than n jobs remaining to be processed. The induction hypothesis now implies
that D13({2}) as well as D23({1}) are nonpositive when there are n jobs remaining
to be completed. It also provides

dD13({2})
dλ1

≥ 0.

This last inequality has the following implication: if λ1 increases then D13({2})
increases. The moment λ1 reaches the value of λ2 jobs 1 and 2 become interchange-
able. Therefore

D13({2})≤ D23({1}) =−D32({1})≤ 0.

From the fact that λ1 < λ2 it follows that D12 is nonpositive. The induction hypothe-
sis also implies that D2 j({1}) and D3 j({2}) are nonpositive, whereby D2 j is nonpos-
itive. This completes the induction argument for the first inequality of the induction
hypothesis. The induction argument for the second inequality can be established by
differentiating

λ1

λ1 +λ2
D32({1})+

λ2

λ1 +λ2
D13({2})

with respect to λ1 and then using induction to show that every term is positive. 2

This proof shows that LEPT is optimal in the class of preemptive dynamic policies.
As the optimal policy is a nonpreemptive static list policy it also has to be optimal in
the class of nonpreemptive static list policies as well as in the class of nonpreemptive
dynamic policies. In contrast with the first proof of the same result, this approach
also works for an arbitrary number of machines in parallel. The notation, however,
becomes significantly more involved.

The interchange aproach described in the beginning of this section is not entirely
useless. To show that the nonpreemptive LEPT policy is optimal when the processing
time distributions are ICR, one has to adopt a pairwise interchange type argument.
The reason is obvious. In a preemptive framework the remaining processing time
of an ICR job that has received a certain amount of processing may become less (in
expectation) than the expected processing time of a job that is waiting for processing.
This then would lead to a preemption. The approach used in Lemma 14.16 and
Theorem 14.17 can be applied easily to a number of different classes of distributions
for which the approach used in Theorem 14.22 does not appear to yield the optimal
nonpreemptive schedule.

Consider minimizing the total expected completion time of the n jobs. The pro-

24 14. Stochastic scheduling models

cessing time of job j is exponentially distributed with rate λ j. In Chapter 7 it was
shown that the SPT rule is optimal for the deterministic counterpart of this problem.
This gives an indication that in a stochastic setting the Shortest Expected Processing
Time first (SEPT) rule may minimize the sum of the expected completion times un-
der appropriate conditions. Consider again two machines in parallel with n jobs. The
processing time of job j is exponentially distributed with rate λ j. An approach sim-
ilar to the one followed in Theorem 14.22 for the makespan can be followed for the
total expected completion time. The result then is that the nonpreemptive SEPT pol-
icy minimizes the total expected completion time in the class of preemptive dynamic
policies.

Actually, it turns out that a much more general result can be shown. Consider the
more general setting where the n processing times X1, . . . ,Xn come from arbitrary
distributions F1, . . . ,Fn and X1 ≤st X2 ≤st · · · ≤st Xn.

Theorem 14.23. The nonpreemptive SEPT policy minimizes the total expected com-
pletion time in expectation and even stochastically in the class of nonpreemptive
dynamic policies.

This result is more general than the corresponding result obtained for minimizing
the expected makespan. Recall that LEPT does not minimize the expected makespan
when the X1, . . . ,Xn are arbitrarily distributed and stochastically ordered.

In the remaining part of this section we consider the problem of two machines in
parallel with i.i.d. job processing times distributed exponentially with mean 1, with
precedence constraints in the form of an intree, and the expected makespan to be
minimized in the class of preemptive dynamic policies (that is, a stochastic counter-
part of P2 | p j = 1, intree |Cmax). For the deterministic version of this problem the
Critical Path (CP) rule (sometimes also referred to as the Highest Level first (HL)
rule) is optimal. The CP rule is in the deterministic case optimal for an arbitrary
number of machines in parallel, not just two.

For the stochastic version the following notation is needed. The root of the intree
is level 0. A job is at level k if there is a chain of k−1 jobs between it and the root of
the intree. A precedence graph G1 with n jobs is said to be flatter than a precedence
graph G2 with n jobs if the number of jobs at or below level k in G1 is larger than
the number of jobs at or below level k in graph G2. This is denoted by G1 ≺ f l G2.
In the following lemma two scenarios, both with two machines and n jobs but with
different intrees, are compared. Let E(Cmax(i)(CP)) denote the expected makespan
under the CP rule when the precedence constraints graph takes the form of intree Gi,
i = 1,2.

Note that in the subsequent lemma and theorem, preemptions are allowed. How-
ever, it will become clear afterwards that for intree precedence constraints the CP
rule does not require any preemptions. Also, recall that whenever a job is completed
on one machine, the remaining processing time of the job being processed on the
other machine is still exponentially distributed with mean one.

14.5. Stochastic multi-operation models 25

Theorem 14.24. The nonpreemptive CP rule minimizes the expected makespan in
the class of nonpreemptive dynamic policies and in the class of preemptive dynamic
policies.

As mentioned before, the results presented in Theorems 14.17 and 14.22, even though
they were only proved for m = 2, hold for arbitrary m. The CP rule in Theorem 14.24
is, however, not necessarily optimal for m larger than two.

Example 14.25. Consider three machines and 12 jobs. The jobs are all i.i.d. expo-
nential with mean 1 and subject to the precedence constraints described in Figure ...
Scheduling according to the CP rule would put jobs 1, 2 and 3 at time zero on the
three machines. However, straightforward algebra shows that starting with jobs 1, 2
and 4 results in a smaller expected makespan.

In the deterministic setting discussed in Chapter 10 it was shown that the CP rule is
optimal for P | p j = 1, intree |Cmax and P | p j = 1,outtree |Cmax. One may expect
the CP rule to be optimal when all processing times are exponential with mean 1 and
precedence constraints take the form of an outtree. However, a counterexample can
be found easily already in the case of 2 machines in parallel.

Consider again the problem of two machines in parallel with jobs having i.i.d. ex-
ponentially distributed processing times and subject to precedence constraints which
take the form of an intree, but now with the expected flow time as the objective to be
minimized. We present the following theorem without proof.

Theorem 14.26. The nonpreemptive CP rule minimizes the total expected comple-
tion time in the class of nonpreemptive dynamic policies and in the class of preemp-
tive dynamic policies.

14.5. Stochastic multi-operation models

Results for stochastic flow shop, open shop and job shop models are somewhat lim-
ited in comparison with the results for their deterministic counterparts.

For flow shops nonpreemptive static list policies, i.e., permutation schedules, are
considered first. The optimal permutation schedules often remain optimal in the class
of nonpreemptive dynamic policies as well as in the class of preemptive dynamic
policies. For open shops and job shops, only the classes of nonpreemptive dynamic
policies and preemptive dynamic policies are considered.

The results obtained for stochastic flow shops and job shops are somewhat similar
to those obtained for deterministic flow shops and job shops. Stochastic open shops
are, however, very different from their deterministic counterparts.

The first section discusses stochastic flow shops with unlimited intermediate stor-
age and jobs not subject to blocking. The second section deals with stochastic flow
shops with zero intermediate storage; the jobs are subject to blocking. The last sec-
tion goes over stochastic open shops and stochastic job shops.

26 14. Stochastic scheduling models

Consider two machines in series with unlimited storage between the machines
and no blocking. There are n jobs. The processing time of job j on machine 1 is X1 j,
exponentially distributed with rate λ j. The processing time of job j on machine 2 is
X2 j, exponentially distributed with rate µ j. The objective is to find the nonpreemp-
tive static list policy or permutation schedule that minimizes the expected makespan
E(Cmax).

Note that this problem is a stochastic counterpart of the deterministic problem
F2 ||Cmax. The deterministic two machine problem has a very simple solution, i.e.,
Johnson’s rule. It turns out that the stochastic version with exponential processing
times has a very elegant solution as well.

Theorem 14.27. Sequencing the jobs in decreasing order of λ j− µ j minimizes the
expected makespan in the class of nonpreemptive static list policies, the class of
nonpreemptive dynamic policies and the class of preemptive dynamic policies.

Proof. The proof of optimality in the class of nonpreemptive static list policies is in
a sense similar to the proof of optimality in the deterministic case. It is by contradic-
tion. Suppose another sequence is optimal. Under this sequence, there must be two
adjacent jobs, say job j followed by job k, such that λ j−µ j < λk−µk. It suffices to
show that a pairwise interchange of these two jobs reduces the expected makespan.
Assume job l precedes job j and let C1l (C2l) denote the (random) completion time
of job l on machine 1 (2). Let Dl =C2l−C1l .

Perform an adjacent pairwise interchange on jobs j and k. Let C1k and C2k denote
the completion times of job k on the two machines under the original, supposedly
optimal, schedule and let C′1 j and C′2 j denote the completion times of job j under
the schedule obtained after the pairwise interchange. Let m denote the job following
job k. Clearly, the pairwise interchange does not affect the starting time of job m on
machine 1 as this starting time is equal to C1k =C′1 j =C1l +X1 j +X1k. Consider the
random variables

Dk =C2k−C1k

and
D′j =C′2 j−C′1 j.

Clearly, C1k +Dk is the time at which machine 2 becomes available for job m under
the original schedule, while C1k +D′j is the corresponding time after the pairwise
interchange. First it is shown that the random variable D′j is stochastically smaller
than the random variable Dk. If Dl ≥ X1 j +X1k, then clearly Dk = D′j. The case
Dl ≤ X1 j +X1k is slightly more complicated. Now

P(Dk > t | Dl ≤ X1 j +X1k) =
µ j

λk +µ j
e−µkt +

λk

λk +µ j

(µk

µk−µ j
e−µ jt −

µ j

µk−µ j
e−µkt

)
.

This expression can be explained as follows. Since Dl ≤ X1 j +X1k, then, whenever
job j starts on machine 2, job k is either being started or still being processed on
machine 1. The first term on the R.H.S. corresponds to the event where job j’s

14.5. Stochastic multi-operation models 27

processing time on machine 2 finishes before job k’s processing time on machine 1,
which happens with probability µ j/(µ j +λk). The second term corresponds to the
event where job j finishes on machine 2 after job k finishes on machine 1; in this
case the distribution of Dk is a convolution of an exponential with rate µ j and an
exponential with rate µk.

An expression for P(D′j > t | Dl ≤ X1 j +X1k) can be obtained by interchanging
the subscripts j with the subscripts k. Now

P(D′j > t | Dl ≤ X1 j +X1k)−P(Dk > t | Dl ≤ X1 j +X1k) =

µ jµk

(λ j +µk)(λk +µ j)

e−µ jt − e−µkt

µk−µ j
(λ j +µk−λk−µ j)≤ 0.

So D′j is stochastically smaller than Dk. It can be shown easily, through a straight-
forward sample path analysis (i.e., fixing the processing times of job m and of all
the jobs following job m), that if the realization of D′j is smaller than the realization
of Dk, then the actual makespan after the interchange is smaller than or equal to the
actual makespan under the original sequence before the interchange. So, given that
D′j is stochastically smaller than Dk, the expected makespan is reduced by the inter-
change. This completes the proof of optimality in the class of nonpreemptive static
list (i.e., permutation) policies.

That the rule is also optimal in the class of nonpreemptive dynamic policies can
be argued as follows. It is clear that the sequence on machine 2 does not matter. This
is because the time machine 2 remains busy processing available jobs is simply the
sum of their processing times and the order in which this happens does not affect
the makespan. Consider the decisions which have to be made every time machine
1 is freed. The last decision to be made is at that point in time when there are only
two jobs remaining to be processed on machine 1. From the pairwise interchange
argument described above, it immediately follows that the job with the highest λ j−
µ j value has to go first. Suppose that there are three jobs remaining to be processed
on machine 1. From the previous argument it follows that the last two of these three
have to be processed in decreasing order of λ j− µ j. If the first one of the three is
not the one with the highest λ j− µ j value, a pairwise interchange between the first
and the second reduces the expected makespan. So the last three jobs have to be
sequenced in decreasing order of λ j − µ j. Continuing in this manner it is shown
that sequencing the jobs in decreasing order of λ j − µ j is optimal in the class of
nonpreemptive dynamic policies.

That the nonpreemptive rule is also optimal in the class of preemptive dynamic
policies can be shown in the following manner. It is shown above that in the class of
nonpreemptive dynamic policies the optimal rule is to order the jobs in decreasing
order of λ j−µ j. Suppose during the processing of a job on machine 1 a preemption
is considered. The situation at this point in time is essentially no different from the
situation at the point in time the job was started (because of the memoryless property
of the exponential distribution). So, every time a preemption is contemplated, the
optimal decision is to keep the current job on the machine. Thus the permutation

28 14. Stochastic scheduling models

policy is also optimal in the class of preemptive dynamic policies. 2

From the statement of the theorem, it appears that the number of optimal schedules
in the exponential case is often smaller than the number of optimal schedules in the
deterministic case. The following example makes this clear.

Example 14.28. Consider n jobs with exponentially distributed processing times.
One job has zero processing time on machine 1 and a processing time on machine 2
with a very large mean. Assume that this mean is larger than the sum of the expected
processing times of the remaining n− 1 jobs on machine 1. According to Theorem
14.27 these remaining n− 1 jobs still have to be ordered in decreasing order of
λ j−µ j for the sequence to minimize the expected makespan.

If all the processing times were deterministic with processing times equal to the
means of the exponential processing times, it would not have mattered in what order
the remaining n−1 jobs were sequenced.

Although at first glance Theorem 14.27 does not appear to be very similar to John-
son’s result for its deterministic counterpart, the optimal schedule with exponential
processing times is somewhat similar to the optimal schedule with deterministic pro-
cessing times. If job k follows job j in the optimal sequence with exponential pro-
cessing times, then

λ j−µ j ≥ λk−µk

or
λ j +µk ≥ λk +µ j

or
1

λ j +µk
≤ 1

λk +µ j
,

which, with exponential processing times, is equivalent to

E(min(X1 j,X2k))≤ E(min(X1k,X2 j)).

This adjacency condition is quite similar to the condition for job k to follow job j in
a deterministic setting, namely

min(p1 j, p2k)≤min(p1k, p2 j).

There is another similarity between exponential and deterministic settings. Consider
the case where the processing times of job j on both machines are i.i.d. exponentially
distributed with the same rate, λ j, for each j. According to the theorem all sequences
must have the same expected makespan. This result is similar to the deterministic
proportionate flow shop, where all sequences also result into the same makespan.

We now focus on m-machine permutation flow shops. For these flow shops only
the class of nonpreemptive static list policies is of interest, since the order of the jobs,
once determined, is not allowed to change.

14.5. Stochastic multi-operation models 29

Consider an m-machine permutation flow shop where the processing times of job
j on the m machines are i.i.d. according to distribution Fj with mean 1/λ j. For such
a flow shop it is easy to obtain a lower bound for E(Cmax).

Lemma 14.29. Under any sequence

E(Cmax)≥
n

∑
j=1

1
λ j

+(m−1)max
(1

λ1
, . . . ,

1
λn

)
Proof. The expected time it takes the job with the largest expected processing

time to traverse the flow shop is at least mmax(1/λ1, . . . ,1/λn). The time that this
largest job starts on machine 1 is the sum of the processing times on the first machine
of those jobs scheduled before the longest job. After the longest job completes its
processing on the last machine, this machine remains busy for a time that is at least
as large as the sum of the processing times on the last machine of all those jobs
scheduled after the longest job. The lemma thus follows. 2

One class of sequences plays an important role in stochastic permutation flow shops.
A sequence j1, . . . , jn is called a SEPT-LEPT sequence, if there is a job jk in this
sequence such that

1
λ j1
≤ 1

λ j2
≤ ·· · ≤ 1

λ jk

and
1

λ jk
≥ 1

λ jk+1

≥ ·· · ≥ 1
λ jn

.

Both the SEPT and the LEPT sequence are examples of SEPT-LEPT sequences.

Theorem 14.30. If F1 ≤a.s. F2 ≤a.s. · · · ≤a.s. Fn, then
(i) any SEPT-LEPT sequence minimizes the expected makespan in the class of non-
preemptive static list policies and

E(Cmax) =
n

∑
j=1

1
λ j

+(m−1)
1
λn

.

(ii) the SEPT sequence minimizes the expected flow time in the class of nonpreemp-
tive static list policies and

E(
n

∑
j=1

C j) = m
n

∑
j=1

1
λ j

+
n−1

∑
j=1

j
λn− j

.

It is easy to find examples with F1 ≤a.s. F2 ≤a.s. · · · ≤a.s. Fn, where sequences which
are not SEPT-LEPT are also optimal (it can be shown that when F1,F2, . . . ,Fn are
deterministic any sequence minimizes the makespan). However, in contrast with

30 14. Stochastic scheduling models

deterministic proportionate flow shops, when processing times are stochastic and
F1 ≤a.s. F2 ≤a.s. · · · ≤a.s. Fn not all sequences are always optimal.

Example 14.31. Consider a flow shop with 2 machines and 3 jobs. Job 1 has a
deterministic processing time of 11 time units. Job 2 has a deterministic processing
time of 10 time units. The processing time of job 3 is zero with probability 0.5 and
10 with probability 0.5. It can be verified easily that only SEPT-LEPT sequences
minimize the expected makespan. If the processing time of job 1 is changed from 11
to 20, then all sequences have the same expected makespan.

Consider a two-machine open shop where the processing time of job j on machine 1
is the random variable X1 j, distributed according to F1 j, and on machine 2 the random
variable X2 j, distributed according to F2 j. The objective is to minimize the expected
makespan. As before, the exponential distribution is considered first. In this case,
however, it is not known what the optimal policy is when F1 j is exponential with rate
λ j and F2 j exponential with rate µ j. It appears that the optimal policy may not have
a simple structure and may even depend on the values of the λ’s and µ’s. The special
case where λ j = µ j can be analyzed. In contrast with the results obtained for the
stochastic flow shops the optimal policy now cannot be regarded as a permutation
sequence, but rather as a policy which prescribes a given action dependent upon the
state of the system.

Theorem 14.32. The following policy minimizes the expected makespan in the class
of preemptive dynamic policies as well as in the class of nonpreemptive dynamic
policies: whenever a machine is freed, the scheduler selects from the jobs which
have not yet undergone processing on either one of the two machines, the job with the
largest expected processing time. If there are no such jobs remaining the decision-
maker may take any job which only needs processing on the machine just freed.
Preemptions never need to take place.

It appears to be very hard to generalize this result to include a larger class of distri-
butions.

Example 14.33. Let the processing time of job j on machine i, i = 1,2, be a mixture
of an exponential with rate λ j and zero with arbitrary mixing probabilities. The
optimal policy is to process at time 0 all jobs for a very short period on both machines
just to check whether their processing times on the two machines are zero or positive.
After the nature of all the processing times have been determined, the problem is
reduced to the scenario covered by Theorem 14.32.

Theorem 14.32 states that jobs which still have to undergo processing on both ma-
chines have priority over jobs which only have to be processed on one machine. In
a sense, the policy described in Theorem 14.32 is similar to the Longest Alternate
Processing Time first (LAPT) rule for the deterministic O2 ||Cmax problem.

14.5. Stochastic multi-operation models 31

From Theorem 14.32 it follows that the problem is tractable also if the processing
time of job j on machine 1 as well as on machine 2 is exponentially distributed with
rate 1. The policy that minimizes the expected makespan always gives priority to
jobs that have not yet undergone processing on either machine. This particular rule
does not require any preemptions. In the literature, it has been referred to in this
scenario as the Longest Expected Remaining Processing Time first (LERPT) rule.

Actually, if in the two-machine case all processing times are exponential with
mean 1 and if preemptions are allowed, then the sum of the expected completion
times can also be analyzed. This model is an exponential counterpart of O2 | pi j =
1, pmtn | ∑C j. The total expected completion time clearly requires a different pol-
icy. One particular policy is appealling in the class of preemptive dynamic policies:
consider the policy which prescribes the scheduler to process, whenever possible, on
each one of the machines a job which already has been processed on the other ma-
chine. This policy may require the scheduler at times to interrupt the processing of a
job and start with the processing of a job which just has completed its operation on
the other machine. In what follows this policy is referred to as the Shortest Expected
Remaining Processing Time first (SERPT) policy.

Theorem 14.34. The preemptive SERPT policy minimizes the total expected com-
pletion time in a two machine open shop in the class of preemptive dynamic policies.

Proof. Let Ai j, i = 1,2, j = 1, . . . ,n, denote the time that j jobs have completed
their processing requirements on machine i. An idle period on machine 2 occurs if
and only if

A1,n−1 ≤ A2,n−1 ≤ A1,n

and an idle period on machine 1 occurs if and only if

A2,n−1 ≤ A1,n−1 ≤ A2,n.

Let j1, j2, . . . , jn denote the sequence in which the jobs leave the system, i.e., job j1
is the first one to complete both operations, job j2 the second, and so on. Under the
SERPT policy

C jk = max(A1,k,A2,k) = max
(k

∑
l=1

X1l ,
k

∑
l=1

X2l

)
, k = 1, . . . ,n−1

This implies that the time epoch of the kth job completion, k = 1, . . . ,n−1, is a ran-
dom variable which is the maximum of two independent random variables, both with
Erlang(k) distributions. The distribution of the last job completion, the makespan, is
different. It is clear that under the preemptive SERPT policy the sum of the expected
completion times of the first n−1 jobs that leave the system are minimized. It is not
immediately obvious that SERPT minimizes the sum of all n completion times. Let

B = max(A1,n−1,A2,n−1).

32 14. Stochastic scheduling models

The random variable B is independent of the policy. At time B, each machine has at
most one more job to complete. A distinction can now be made between two cases.

First, consider the case where, at B, a job remains to be completed on only one
of the two machines. In this case, neither the probability of this event occurring nor
the waiting cost incurred by the last job which leaves the system (at max(A1,n,A2,n))
depends on the policy. Since SERPT minimizes the expected sum of completion
times of the first n−1 jobs to leave the system, it follows that SERPT minimizes the
expected sum of the completion times of all n jobs.

Second, consider the case where, at time B, a job remains to be processed on both
machines. Either (i) there is one job left which needs processing on both machines
or (ii) there are two jobs left, each needing processing on one machine (a different
machine for each). Under (i) the expected sum of the completion times of the last two
jobs to complete their processing is E(B)+E(B+2), while under (ii) it is E(B)+1+
E(B)+1. In both subcases the expected sum of the completion times of the last two
jobs is the same. As SERPT minimizes the expected sum of the completion times of
the first n−2 jobs to leave the system, it follows that SERPT minimizes the expected
sum of the completion times of all n jobs. 2

Unfortunately, no results have been reported in the literature with respect to stochas-
tic open shops with more than 2 machines.

Consider now the two-machine job shop with job j having a processing time on
machine 1 which is exponentially distributed with rate λ j and a processing time on
machine 2 which is exponentially distributed with rate µ j. Some of the jobs have
to be processed first on machine 1 and then on machine 2, while the remaining jobs
have to be processed first on machine 2 and then on machine 1. Let J1,2 denote the
first set of jobs and let J2,1 denote the second set of jobs. Minimizing the expected
makespan turns out to be an easy extension of the two machine flow shop model with
exponential processing times.

Theorem 14.35. The following policy minimizes the expected makespan in the class
of nonpreemptive dynamic policies as well as in the class of preemptive dynamic
policies: when machine 1 is freed the decision-maker selects from J1,2 the job with
the highest λ j− µ j ; if all jobs from J1,2 have received processing on machine 1 he
may take any job from J2,1. When machine 2 is freed the decision-maker selects from
J2,1 the job with the highest µ j−λ j ; if all jobs from J2,1 have received processing
on machine 2 he may take any job from J1,2.

The result described in Theorem 14.35 is somewhat similar to the result obtained by
Jackson for J2 || Cmax. In deterministic scheduling the research on the more gen-
eral Jm ||Cmax has focused on heuristics and enumerative procedures. In stochastic
scheduling less research has been done on job shops with more than two machines.

14.6. Discussion 33

14.6. Discussion

No framework or classification scheme has ever been introduced for stochastic sched-
uling problems. It is more difficult to develop such a scheme for stochastic sched-
uling problems than for deterministic scheduling problems. For example, it has to
be specified which class of policies is considered, it has to be specified whether the
processing times of the n jobs are independent or correlated (e.g., equal to the same
random variable), it may have to be specified that the processing times are of one
type of distribution (e.g., exponential), while the due dates are of another (e.g., de-
terministic). For these reasons no framework has been introduced in this chapter
either.

Table 15.1 outlines a number of scheduling problems of which stochastic versions
are tractable. This list refers to most of the problems discussed in this chapter. In
the distribution column the distribution of the processing times is specified. If the
entry in this column specifies a form of stochastic dominance, then the n processing
times are arbitrarily distributed and ordered accordingly. The due dates in this table
are considered fixed (deterministic).

Comparing Table 15.1 with the results described in earlier chapters of this book
reveals that there are a number of stochastic scheduling problems that are tractable
while their deterministic counterparts are NP-hard. The four NP-hard deterministic
problems are:

(i) 1 | r j, pmtn | ∑w jC j,
(ii) 1 | d j = d | ∑w jU j,

(iii) 1 | d j = d | ∑w jTj,
(iv) P ||Cmax.

The first problem allows for a nice solution when the processing times are exponen-
tial and the release dates are arbitrarily distributed. The optimal policy is then the
preemptive WSEPT rule. When the processing time distributions are anything but
exponential it appears that the preemptive WSEPT rule is not necessarily optimal.
The stochastic counterparts of the second and third problem also lead to the WSEPT
rule when the processing time distributions are exponential and the jobs have a com-
mon due date which is arbitrarily distributed. Also here, if the processing times are
anything but exponential the optimal rule is not necessarily WSEPT.

The stochastic counterparts of P ||Cmax are slightly different. When the process-
ing times are exponential the LEPT rule minimizes the expected makespan in all
classes of policies. However, this holds for other distributions also. If the processing
times are DCR (e.g., hyperexponentially distributed) and satisfy a fairly strong form
of stochastic dominance, the LEPT rule is optimal as well. Note that if preemptions
are allowed, and the processing times are DCR, the nonpreemptive LEPT rule re-
mains optimal. Note also, that if the n processing times have the same mean and are
hyperexponentially distributed as in Example 14.21, then the LV rule minimizes the
expected makespan.

34 14. Stochastic scheduling models

Of course, there are also problems of which the deterministic version is easy and
the version with exponential processing times is hard. Examples are:

(i) O2 ||Cmax,
(ii) P | p j = 1, tree |Cmax.

For the O2 || Cmax problem the LAPT rule is optimal; when the processing times
are exponential the problem appears to be very hard. For the deterministic problem
P | p j = 1, tree | Cmax the CP rule is optimal. For the version of the same problem
with all processing times i.i.d. exponential the optimal policy is not known and may
depend on the form of the tree. One would expect that there are many scheduling
problems of which the deterministic version with unit processing times is easy, and
of which the stochastic version with all processing times i.i.d. exponential is hard.

Table 15.1: Tractable Stochastic Scheduling Problems

DETERMINISTIC DISTRIBUTIONS OPTIMAL POLICY
COUNTERPART

1 || ∑w jC j arbitrary WSEPT
1 | r j, pmtn | ∑w jC j exponential WSEPT (preemptive)

P ||Cmax exponential LEPT
P | pmtn |Cmax exponential LEPT
P || ∑C j ≥st SEPT
P2 | p j = 1, intree |Cmax exponential CP
P2 | p j = 1, intree | ∑C j exponential CP

F2 ||Cmax exponential (λ j−µ j) ↓
F | pi j = p j |Cmax ≥as SEPT-LEPT
F | pi j = p j | ∑C j ≥as SEPT

O2 | pi j = p j |Cmax exponential Theorem 14.32
O2 | pi j = 1, pmtn | ∑C j exponential SERPT

J2 ||Cmax exponential Theorem 14.35

