
PHYSICS-TECHNOLOGY INSTITUTE FOR LOW TEMPERATURES
ACADEMY OF SCIENCES OF THE UKRAINIAN SSR

NUMERICAL MATHEMATICS AND COMPUTER TECHNOLOGY
1972, VOLUME 3

On the comparative complexity
of some discrete optimization problems1

E.M. Livshits, V.I. Rublinetsky

Kharkov

Suppose that we have n stones. We have to arrange them in two piles of maximal similarity by
weight. For this problem no simple algorithm is known, although as a special case of the knapsack
problem it can be solved by enumerative methods [10, 12].

For many discrete optimization problems in turns out that, in order to solve them, one needs
to know how to solve the stones problem; in that sense, such problems are harder than the stones
problem. This type of comparative analysis, which does not require knowledge of the absolute
complexity, seems to be useful to us; in any case, when solving discrete optimization problems, we
have since long used this type of analysis as a test, and when finding “stones” we do not waste
our time looking for simple algorithms.

In this paper we introduce a concept of reducing a given problem to another one, which al-
lows us to say that a problem is not harder than another problem in the sense mentioned above,
provided that the reduction itself is simple. We will show that the stones problem is a sufficiently
universal minorant, since it can be reduced to many well-known discrete optimization problems in
a simple way.

§1. General concepts

Let A be the input of a given problem and let a function F (A, v) be defined for each A ∈ X
and v ∈ V , where V is a finite set. A discrete optimization problem T is the problem of finding a
v̆(A) ∈ V̆(A), V̆(A) ⊆ V , such that

min
v∈V

F (A, v) = F (A, v̆).

In this way, the problem T defines a mapping T (A) = V̆(A).
A subproblem T ′ is a restriction of T to X ′, X ′ ⊆ X, i.e., the inputs of the subproblem are

taken from a subset X ′ ⊆ X, notation T ′ ⊴ T .
Definition. Problem T1 directly reduces to problem T2 if there exist surjections α : X1 → X2

and β : V2 → V1 such that
T1 = βT2α.

Such a relation is clearly reflexive and transitive.
Problem T0 reduces to problem T if there exists a subproblem T ′ to which T0 reduces directly.

If T0 = βT ′α, then the pair (α, β) gives a reduction of T0 to T . This relation is also a partial order.

1This is a translation of a paper that was written in Russian and published in 1972. The translation was prepared
by Jan Karel Lenstra, Vitaly Strusevich and Milan Vlach. They review the approach and the results of Livshits
and Rublinetsky in “A historical note on the complexity of scheduling problems”, Operations Research Letters 51
(2023) 1–2.

1

We shall comment on our definitions. If T0 reduces to T , then an individual problem T0(A0)
can be solved as follows: 1) transform the input A0 into the input A′ using α, 2) find V̆(A′) by
solving problem T (A′), 3) transform the solution V̆(A′) into V̆0(A0) using β. If in this reduction
the transformation α(A0) = A′ and the backward transformation β are computationally simple,
then the reduction of T0 to T gives an intuitively understandable way to solve problem T0 by the
same algorithm as for T , i.e., it gives evidence that T is no less complex. We will not define more
precisely what is meant by “computationally simple”, since in what follows all reductions will be
given explicitly and need ∼ n arithmetic operations.

In the sequel an input A is given by an n-tuple (a1, a2, . . . , an); we will call the elements ai ∈ Ω
operations, bearing in mind that the problems we shall deal with relate to scheduling theory.

The stones problem T0 has input ai = pi, pi ≥ 0, i.e., Ω = R+
1 , X = R+

n . We have to determine
the minimum of the function

F (A0, w) =
∣∣∣ ∑
i∈w1

pi −
∑
j∈w2

pj

∣∣∣,
where w1 is a subset of indices from I = (1, 2, . . . , n), w2 = I − w1, w = (w1, w2).

For convenience we introduce the function

∆(A0, w) =
∣∣∣1
2

n∑
i=1

pi −
∑
i∈w1

pi

∣∣∣ = ∣∣∣1
2

n∑
i=1

pi −
∑
i∈w2

pi

∣∣∣.
Since F (A0, w) = 2∆(A0, w), problems with these objective functions have the same optimal
solutions. We shall always denote

σ1 =
∑
i∈w1

pi; σ2 =
∑
i∈w2

pi; σ =
1

2

n∑
i=1

pi; |w1| = k; |w2| = n− k.

The following assertion will be useful to us: if F2 = ϕ(F1) and ϕ is an increasing function, then
problem T1 = (X,F1, V) reduces to T2 = (X,F2, V) by the identity mappings α and β.

§2. Scheduling problems with one or two processors

Given is a single processor which has to perform n operations. For operation i we have a processing
time pi, pi > 0, a point in time ri ≥ 0 after which the operation can start, and a nondecreasing
function ϕi(t) – the penalty for completing operation i at time t. We thus have

ai = (pi, ri, ϕi(t)).

A schedule s consists of a sequence of the operations and is defined by a set of the completion
times ti(s), i = 1, 2, . . . , n, where

tj(s) = max(r[j], t[j−1](s)) + p[j]. (1)

From here on we use [j] to denote the operation that occupies the jth position in the sequence.
In minmax problems the objective function has the form

F (A, s) = max
1≤i≤n

ϕi(ti(s)),

in minsum problems the objective function has the form

F (A, s) =
∑

ϕi(ti(s)).

In both cases we have to find the minimum of F over all feasible schedules s.

2

In the case of two identical processors, a schedule v = (w1, w2, s1, s2) splits the operations into
two groups w1 and w2, to be performed by the first and the second processor, respectively; on
the processors schedules s1 and s2 satisfying condition (1) are given. The objective function for
minmax problems has the form

F (A, v) = max(F (A, s1), F (A, s2))

and for minsum problems
F (A, v) = F (A, s1) + F (A, s2).

Such problems are described, for example, in the book [8], which also gives references to the liter-
ature.

1. Minmax problems. Jackson [11] considered the problem of minimizing the maximum penalty
on a single processor, which has to perform n operations with parameters

pi > 0, ri = 0, ϕi(t) =

{
0, t < di,
t− di, t ≥ di.

In this problem we have that operation ai = (pi, 0, di). The problem is solved by sequencing
the operations in increasing order of di. A more general problem with arbitrary nondecreasing
penalty functions also admits a simple solution [4, 7]. In applications, in particular for optimization
problems in industrial control systems, one has to solve Jackson’s problem for several processors
or for ri ̸= 0 [5, 6]. A simple solution to these problems is not known.

Proposition 1. The stones problem reduces to Jackson’s problem on two processors.
Proof. Consider subproblem T ′ ⊴ T defined by

a′ = (p, 0, 0), X ′ = Ω′n = R+
n .

The objective function of subproblem T ′ is

F (A′, v) = max(max
i∈w1

ϕ(ti(s1)),max
j∈w2

ϕ(tj(s2))) = max
(∑

i∈w1

pi,
∑
j∈w2

pj

)
= max(σ1, σ2) = ∆+ σ.

This implies that, if we define α(A0), A0 = (p1, . . . , pn), by a′i = α(A0) = (pi, 0, 0) and use β to
transform the schedule v = (w1, w2, s1, s2) into β(v) = (w1, w2) = w, then T0(A0) = βT ′α(A0).
The stones problem has been reduced to T .

Proposition 2. The stones problem reduces to Jackson’s problem with ri ̸= 0.
Proof. Consider problem T with n+ 1 operations and take subproblem T ′ with operations

a′0 = (p0, σ, σ + p0),
a′i = (pi, 0, 2σ + p0), i = 1, 2, . . . , n,

(2)

where p0 = const, X ′ ∼= R+
n . In subproblem T ′ we have

F (A′, s) = max(max
i∈w1

ϕi(ti(s)), ϕ0(max(σ1, σ) + p0),max
j∈w2

ϕj(tj(s))) =

= max(ϕ(σ1), ϕ0(max(σ1, σ) + p0), ϕ(max(σ1, σ0) + p0 + σ2)).

Here and in similar cases below w1 denotes the set of operations that precede a0 in the schedule
and w2 those that follow a0. For σ1 > σ we have F = max(0, σ1 − σ, 0). For σ1 ≤ σ we have
F = max(0, 0, σ2 − σ). It follows that

F (A′, s) = |σ1 − σ| = ∆.

Hence, if α is given by formula (2) and the schedule s is transformed by β into β(s) = (w1, w2),
then T0(A0) = βT ′α(A0).

3

We have shown that the problem with n stones reduces to a problem with n operations in case
of two processors and to a problem with n + 1 operations in case of a single processor. In the
sequel we shall proceed analogously. In the former case the reduction required no computations,
in the latter case we needed to compute σ + p0 and 2σ + p0. The backward transformation β was
trivial. In what follows we shall not present α and β explicitly; we only note that further below
the description of the subproblem defines α as it did in the proof of Proposition 2.

2. McNaughton’s problem. The well-known problem of McNaughton [14] on a single processor
concerns the minimization of the total penalty for the operations

ai = (pi > 0, ri = 0, ϕi(t) = cit), i = 1, 2, . . . , n.

This problem is solved by placing the operations in decreasing order of ci/pi. In [14] and subse-
quent publications the problem has been generalized in several ways. The problem with ϕ(t) = cie

rt

admits a simple solution [17]. It has been shown that for other classes of smooth nondecreasing
functions simple solutions of this type do not exist [3]. Here we shall demonstrate that generaliza-
tions of the problem either with two processors or with arbitrary ri are not easier than the stones
problem.

Proposition 3. The stones problem reduces to McNaughton’s problem with two processors.
Proof. Take subproblem T ′

1, T
′ ⊴ T , with operations

a′i = (pi > 0, ri = 0, ϕi(t) = pit).

The contribution to the objective function for the schedule v = (w1, w2, s1, s2) is

F1(A
′
1, w1, s1) = p[1]p[1] + p[2](p[1] + p[2]) + · · ·+ p[k](p[1] + · · ·+ p[k]) =

=
∑
i∈w1

p2i +
∑

i<j,i,j∈w1

pipj =
1

2

∑
i∈w1

p2i +
1

2
σ2
1 .

We calculate F2 analogously. Hence, the objective function is equal to F = 2∆2+(2σ2+ 1
2

∑n
i=1 p

2
i).

The equality we have thus obtained proves the reducibility of the stones problem to T .
Proposition 4. The stones problem reduces to McNaughton’s problem with a single processor

and ri ̸= 0.
Proof. Consider problem T with n + 1 operations and define a subproblem T ′ of T with

operations
a′0 = (p0, r0 = σ, ϕ0 = c0t), c0 = 2(σ + p0),
a′i = (pi, ri = 0, ϕi = pit), i = 1, 2, . . . , n.

The contribution of the operations preceding a0 is

F1(A
′, w1) =

1

2
σ2
1 +

1

2

∑
i∈w1

p2i .

The contribution of the operations following a0 is

F2(A
′, w2) = t0σ2 +

1

2

∑
i∈w2

p2i +
1

2
σ2
2 .

Here t0 = max(σ1, σ)+p0 is the completion time of a0. Additionally, taking into consideration the
contribution of a0 we obtain

F (A′, v) =
1

2
(σ2

1 + σ2
2) + σ2t0 + c0t0 +

1

2

n∑
i=1

p2i .

We shall consider two cases: σ1 ≥ σ and σ1 < σ.

4

1) σ1 ≥ σ. Then σ1 = σ +∆, σ2 = σ −∆, and the objective function is equal to

F (1)(A′, v) = ∆(σ + p0) +
(
4σ2 + 5p0σ + 2p20 +

1

2

n∑
i=1

p2i

)
.

2) σ1 < σ. Then σ1 = σ −∆, σ2 = σ +∆, and the objective function is equal to

F (2)(A′, v) = ∆2 + F (1)(A′, v).

The minimum is achieved in the first case, since F (1) < F (2). F (1) attains its minimum simulta-
neously with ∆, which proves the proposition.

3. Minimizing total weighted tardiness. This problem concerns the minimization of the
total penalty on a single processor for the operations

ai =
(
pi, ri = 0, ϕi =

{
0, t < di
ci(t− di), t ≥ di

)
.

There is a vast literature on this problem [9, 16, 18, 19]; some special cases have been solved, lower
and upper bounds have been obtained, there are enumerative algorithms and heuristic procedures.

Proposition 5. The stones problem reduces to the problem of minimizing total weighted tar-
diness.

Proof. Consider problem T with n+1 operations and define a subproblem of T with operations

a′0 =
(
p0, r0 = 0, ϕ0 =

{
0, t < σ + p0
c0(t− (σ + p0))

)
, c0 = 2p0,

a′i = (pi, ri = 0, ϕi = pit), i = 1, 2, . . . , n.

The objective function for subproblem T ′ is

F (A′, v) =
1

2
(σ2

1 + σ2
2) + σ1σ2 + σ2p0 + ϕ0(σ1 + p0) +

1

2

n∑
i=1

p2i .

1) If σ1 ≤ σ, then σ1 = σ −∆, σ2 = σ +∆, and in this case the objective function is

F (1) = ∆p0 +
(
2σ2 + σp0 +

1

2

n∑
i=1

p2i

)
.

2) If σ1 > σ, then σ1 = σ +∆, σ2 = σ −∆, and in this case the objective function is

F (2) = ∆p0 +
(
2σ2 + σp0 +

1

2

n∑
i=1

p2i

)
.

Both functions are the same and attain their minimum simultaneously with ∆.

4. Minimizing the weighted number of late jobs. We have to minimize the sum of the
penalties for processing the operations

ai =
(
pi, ri = 0, ϕi =

{
0, t ≤ di
ci, t > di

)
.

For the unweighted case (ci = 1) the problem admits a simple solution [15]. For the weighted case
Lawler and Moore [12] proposed a dynamic programming algorithm and noticed the similarity
of the functional equations occurring in this problem to those in the knapsack problem. Maxwell
[13], explaining this similarity, formulated a subproblem for which it is necessary to solve the
corresponding knapsack problem.

5

Proposition 6. The stones problem reduces to the problem of minimizing the weighted number
of late jobs.

Proof. Consider subproblem T ′ with operations

a′0 =
(
p0 = 2σ, r0 = 0, ϕ0 =

{
0, t ≤ 3σ
2σ, t > 3σ

)
,

a′i =
(
pi, ri = 0, ϕi =

{
0, t ≤ 2σ
pi, t > 2σ

)
, i = 1, 2, . . . , n.

The objective function decomposes into three components:

F (A′v) = F1(A
′, w1) + ϕ0(σ1 + 2σ) + F2(A

′
1, w2).

1) Let σ1 ≤ σ. Then F1 = 0, ϕ0(σ1 + 2σ) = 0, and each operation from w2 is late, i.e. ϕi = pi,
so that

F (1) = σ2 = σ +∆.

2) Let σ1 > σ. Then F1 = 0, ϕ0 = 3σ, F2 = σ2, and

F (2) = 3σ + σ2 = 4σ −∆.

Since ∆ ≤ σ, it follows that F (1) ≤ F (2), and hence the objective function of the subproblem
attains its minimum in the first case. Reducibility has been proved.

§3. Three-stage scheduling problems

Given are three types of processors, M1, M2, M3, generally not necessarily different, on which
we have to perform n operations. Operation i consists of three stages; the first stage requires
a processing time pi on processor M1, the second one – qi on M2, the third one – ri on M3.
pi, qi, ri ≥ 0. For each type, either there is a single processor or there are “many”. By the latter
we mean that the processor can perform an arbitrary number of operations at the same time;
we shall say that such processors are of type 0. There are no constraints on the starting times of
the stages, except those implied by the occupancy of the processors and by the requirement not
to start a subsequent operation before the preceding operation has been completed. We have to
minimize the total time needed to perform all operations over all schedules v = (s1, s2, s3), where
sk is the order in which the operations in the kth stage are performed.

Different problems will be denoted by different triples (M1,M2,M3). For example, the three-
machine problem of Johnson [2] is denoted by (1, 2, 3).

If we define two-stage problems analogously, then there are five of them: (1, 2), (1, 0), (0, 2),
(0, 0) and (1, 1). The first problem is Johnson’s two-machine problem; it admits a simple solution
from a computational point of view. The second one, close to Jackson’s problem, is solved by
sequencing the operations in decreasing order of qi. The solution of the third problem – a “mirror
reflection” of the second problem, while the fourth and the fifth problems are trivial.

The three-stage problems are somewhat different. If two consecutive symbols in the triple
(M1,M2,M3) are identical, then the problem reduces to a two-machine problem in which these
two symbols appear, and it admits a simple solution. The other problems, which we call essentially
three-stage, do not admit a simple solution. The purpose of the following exposition will be to prove
that the stones problem reduces to each essentially three-stage problem.

We shall first consider essentially three-stage problems in which the second processor is of a
nonzero type. These are Johnson’s problem (1, 2, 3), the problem (0, 2, 0), which was studied in
[5, 6], the problem (0, 2, 3), which may be interpreted as Johnson’s two-machine problem with
different release times for the operations in the first stage, and its “mirror reflection” (1, 2, 0).
Reference [5] demonstrated that the stones problem reduces to problem (0, 2, 0). This reduction is
applicable to all problems we mentioned.

Proposition 7. The stones problem reduces to each essentially three-stage problem in which
the second processor is of a nonzero type.

6

Proof. For all problems mentioned take a corresponding subproblem with operations

a′0 = (p0 = σ, q0, r0 = σ),
a′i = (pi = 0, qi, ri = 0),

∑n
i=1 qi = 2σ.

In each subproblem we need to put operation a0 with processing time p0 on processor M1, from a
point in time τ > p0 the second stage of operation a0 with processing time q0 is being performed
on processor M2, and immediately after that the third stage of operation a0 with processing time
r0 is being performed. Different schedules differ in the sets w1 and w2 of second-stage operations
that, on processor M2, precede or follow the operation of length q0. If

∑
i∈w1

qi < σ, then the
objective function has value p0 + q0 +

∑
j∈w2

qj ; in the opposite case the objective function has
value

∑
i∈w1

qi + q0 + r0. In all cases

F (A′, v) = 2σ + q0 +∆.

The objective function attains its minimum value simultaneously with ∆. The reduction has been
completed.

Two remaining essentially three-stage problems are described by the triple (M1, 0,M3). Prob-
lem (1, 0, 3) was investigated in papers by Jackson, Mitten and Johnson ([8], Ch. 5), and the
“editor’s problem” was formulated in [1].

Proposition 8. The stones problem reduces to each essentially three-stage problem in which
the second processor is of type 0.

Proof. Consider problem (1, 0, 3) with n + 1 operations and define its subproblem T ′ with
operations

a′0 = (p0 = σ, q0 = d+ 2σ, r0 = 0),
a′i = (pi, qi = d− pi, ri = 2pi),

∑n
i=1 pi = 2σ, d ≥ 5σ.

First consider a schedule for a′i, i = 1, 2, . . . , n, only. It is easy to verify that we obtain an optimal
solution if we take any sequence of operations in the first stage and the same sequence in the third
stage. Hence, the objective function has value

F1 = d+

n∑
i=1

ri = d+ 2

n∑
i=1

pi = d+ 4σ.

If we now add a′′0 = (p0, 0, 0) to these operations, then the objective function has value

F2 = max
(
F1,

∑
i∈w1

pi + p0 + d+
∑
j∈w2

rj

)
.

Hence, for subproblem T ′ with a′0 = (p0, q0, 0) the objective function has value F = max(F1, F2,∑
i∈w1

pi+ p0+ q0). Substituting p0 = σ, q0 = d+2σ, we obtain F = ∆+4σ+ d. The proposition
has been proved for problem (1, 0, 3). Since in the construction the operations on M1 and M3 were
distributed over time by the choice of q0, one can assume that M1 = M3 with the same effect, i.e.,
the proposition has also been proved for problem (1, 0, 1).

Literature

1. V.N. Burkov, C.E. Lovetski. Combinatorics and technology development. Znanie, 1968 (in
Russian).
2. S.M. Johnson. Calendar planning. Progress, 1966 (in Russian).
3. G.K. Kladov, E.M. Livshits. Kybernetika 6, 33–41, 1968 (in Russian).
4. E.M. Livshits. Proceedings of the First Winter Workshop on Math. Progr., Vol. 3, 474–476,

1969 (in Russian).
5. E.M. Livshits. Proceedings of the First Winter Workshop on Math. Progr., Vol. 3, 477–497,

1969 (in Russian).

7

6. V.I. Rublinetsky. Proceedings of the First Winter Workshop on Math. Progr., Vol. 3, 523–530,
1969 (in Russian).
7. V.V. Shkurba et al. Scheduling problems and solution methods. Naukova dumka, Kiev (in

Russian).
8. R.W. Conway, W.L. Maxwell, L.W. Miller. Theory of Scheduling. Addison-Wesley Publ. Co.

Reading, Mass., 1967.
9. W.L. Eastman et al. Mgmt. Sci. 11.2, 268–279, 1964.

10. H. Greenberg, R.L. Hegerich. Mgmt. Sci. 16.5, 327–332, 1970.
11. J.R. Jackson. Mgmt. Sci. Res. Project, Res. Report 43, UCLA, 1955.
12. E.L. Lawler, J.M. Moore. Mgmt. Sci. 16.1, 77–84, 1969.
13. W.L. Maxwell. Mgmt. Sci. 16.5, 295–297, 1970.
14. R. McNaughton. Mgmt. Sci. 6.1, 1–12, 1959.
15. J.M. Moore. Mgmt. Sci. 15.1, 102–109, 1968.
16. J.G. Root. Mgmt. Sci. 11.3, 460–475, 1965.
17. M.H. Rothkopf. Mgmt. Sci. 12.5, 437–447, 1966.
18. A. Schild, I. Fredman. Mgmt. Sci. 7.3, 280–285, 1961.
19. A. Schild, I. Fredman. Mgmt. Sci. 8.1, 73–81, 1962.

8

