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Sequencing and scheduling as a research area is motivated by questions that
arise in production planning, in computer control, and generally in all situa-
tions in which scarce resources have to be allocated to activities over time. In
this survey, we concentrate on the area of deterministic machine scheduling.
We review complexity results and optimization and approximation algorithms
for problems involving a single machine, parallel machines, open shops, flow
shops and job shops. We also pay attention to two extensions of this area:
resource-constrained project scheduling and stochastic machine scheduling.

PART I. PRELIMINARIES

Sequencing and scheduling is concerned with the optimal allocation of scarce
resources to activities over time. Of obvious practical importance, it has been
the subject of extensive research since the early 1950’s, and an impressive
amount of literature has been created. Any discussion of the available material
has to be selective. We will concentrate on the area of deterministic machine
scheduling. We will also pay attention to two extensions of this area that are of
particular interest in the context of production planning, namely resource-
constrained project scheduling and stochastic machine scheduling.

The chapter is organized as follows. Part I gives a brief overview of the many

445



446 E.L. Lawler et al.

types of sequencing and scheduling problems that have been investigated, and
then describes the types of algorithms and the concepts of complexity theory
that we will use throughout. Next, the class of deterministic machine schedul-
ing problems that we will consider is introduced. Parts 11, 11T and IV deal with
the single machine, parallel machine and multi-operation problems in this
class, respectively. Finally, Part V is devoted to the two generalizations of the
deterministic machine scheduling model.

Each of the thirteen sections in Parts II-V starts with the full treatment of a
relatively simple but crucial result. After this highlight, we review the other
results that have been obtained for the subclass under consideration, in the
style of two previous surveys by Graham, Lawler, Lenstra & Rinnooy Kan
[1979] and Lawler, Lenstra & Rinnooy Kan [1982].

1. Sequencing and scheduling problems

The theory of sequencing and scheduling, more than any other area in
operations rescarch, is characterized by a virtually unlimited number of
problem types. Most research has traditionally been focused on deterministic
machine scheduling. Our presentation reflects this emphasis. It already allows
for more than enough variety, as the reader will soon realize, but it is also
based on some restrictive assumptions.

The first restriction concerns the type of resource. A machine is a resource
that can perform at most one activity at any time. The activities arce commonly
referred to as jobs, and it is also assumed that a job is worked on by at most
one machine at any time. It is not hard to think of more general scheduling
situations in which, at one point in time, a resource serves several jobs and a
job uses several resources. That leads us into the area of resource-constrained
project scheduling, which is the subject of Section 15.

The second restriction concerns the deterministic nature of the problems. All
the information that defines a problem instance is known with certainty in
advance. Deterministic scheduling is part of combinatorial optimization. In-
deed, all the techniques of combinatorial optimization have at some point been
applied to scheduling problems. It is an obvious extension to assume that some
of the problem data are subject to random fluctuations. The area of stochastic
machine scheduling is briefly reviewed in Section 16.

In studying the allocation of machines to jobs, we are concerned with
scheduling at the detailed, operational level. We will pay no attention to
tactical decisions, such as the determination of due dates, or to strategical
decisions, such as the acquisition of machines.

Further, we will restrict ourselves to the minimization of a single optimality
criterion which is nondecreasing in each of the job completion times. This
excludes nonregular criteria, which involve, e.g., the carliness of the jobs or
the number of setups, and multicriteria scheduling, which is a relatively
unexplored area.
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We also have to exclude a number of other areas, each of which would be
worth a survey of its own: periodic scheduling, cyclic scheduling, scheduling
with fixed starting times, and scheduling with sequence-dependent processing
times. The latter area is closely related to the traveling salesman problem and
its extensions.

General references on sequencing and scheduling are the classic book by
Conway, Maxwell & Miller [1967], the introductory textbooks by Baker [1974]
and French [1982], the expository articles collected by Coffman [1976], and the
proceedings volume edited by Dempster, Lenstra & Rinnooy Kan [1982].
There are several survey papers that complement the present chapter. We
mention the review of the broad area of production planning by Graves [1981],
the introductory survey of precedence-constrained scheduling by Lawler &
Lenstra [1982], the tutorial on machine scheduling by Lawler [1983], the
NP-completeness column on multiprocessor scheduling by Johnson [1983], the
annotated bibliography covering the period 1981-1984 by Lenstra & Rinnooy
Kan [1985], the discussions of new directions in scheduling by Lenstra &
Rinnooy Kan [1984], Blazewicz [1987] and Blazewicz, Finke, Haupt & Schmidt
[1988], and the recent overviews of single-machine scheduling by Gupta &
Kyparisis [1987] and of multiprocessor and flow shop scheduling by Kawaguchi
& Kyan [1988].

References on resource-constrained project scheduling and stochastic
scheduling will be given in Sections 15 and 16. For the scheduling areas that are
not covered in this chapter, we refer to the bibliography by Lenstra & Rinnooy
Kan [1985]. In addition, we mention the survey of due date determination rules
by Cheng & Gupta [1989], the reviews on scheduling with nonregular criteria
by Raghavachari [1988] and Baker & Scudder [1990], the results in that area by
Garey, Tarjan & Wilfong [1988], the survey on bicriterion single-machine
scheduling by Dileepan & Sen [1988], and the book on the traveling salesman
problem edited by the present authors [Lawler, Lenstra, Rinnooy Kan &
Shmoys, 1985].

2. Algorithms and complexity

Practical experience makes it clear that some computational problems are
easier to solve than others. For some scheduling problems, algorithms have
been known for decades that are capable of solving instances with thousands of
jobs, whereas for other problems, the best algorithms strain to cope with only a
handful of jobs. Complexity theory provides a mathematical framework in
which computational problems can be studied so that they can be classified as
‘easy’ or ‘hard’. In this section, we will review the main points of this theory.
The reader is referred to the survey articles by Karp [1975], Lenstra &
Rinnooy Kan [1979], Shmoys & Tardos [1993], and Stockmeyer [1992], and to
the textbook by Garey & Johnson [1979] for a more extensive treatment of this
subject.
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A computational problem can be viewed as a function f that maps each input
x in some given domain to an output f(x) in some given range. Although there
may be many ways to represent the input domain for a particular problem,
these specifics will be largely unimportant. We will be interested in studying the
time required to compute f(x) as a function of the length of the encoding of the
input x, denoted | x |. For a more precise discussion, a mathematical model of
an algorithm, a Turing machine, is commonly used, but it will suffice to think
in terms of any standard programming language. In considering an algorithm
that computes f(x) on input x, we will measure its efficiency by an upper bound
T(n) on the number of steps that the algorithm takes on any input x with
| x| = n. We will not be concerned with the precise form of the function 7 but
rather with its asymptotic order. For this purpose, we say that 7(n) = O( g(n))
if there exist constants ¢ and n, such that T(n) < cg(n) for all n=n,. We will
consider a problem ‘easy’ if there exists an algorithm for its solution which has
running time T(n) = O(n") for some constant k; that is, T(n) is bounded by a
polynomial function of n.

Most of the problems in which we are interested are optimization problems,
where, for input x, the output f(x) is the smallest value in a range of feasible
integral values. It will be convenient to focus on decision problems, where the
output range is {yes, no}. For any minimization problem f, there is an
associated decision problem, the output of which answers the question ‘Is
flx)=<k? for any given k. If the decision problem is easy, then one can
typically apply binary search over k to obtain an algorithm for f with poly-
nomially bounded running time. Let P denote the class of decision problems
that can be solved in polynomial time.

Unfortunately, for a majority of the problems that we shall encounter, no
polynomial-time algorithm is known. It is an important open question if any of
these problems can be solved in polynomial time. Nonetheless, a beautiful
theory developed by Cook [1971], Karp [1972] and Levin [1973] has provided a
means of giving strong evidence that no such algorithm exists for a particular
problem.

When a scheduling problem is formulated as a decision problem, e.g., ‘Is
there a feasible schedule that completes within the deadline d?°, there is an
important asymmetry between those inputs whose output is ‘yes' and those
whose output is ‘no’. Note that a ‘yes’ answer can be certified by a small
amount of information: the schedule that meets the deadline. Given this
certificate, the ‘yes’ answer can be verified in polynomial time. Let NP denote
the class of decision problems where each ‘yes’ input x has a certificate y, such
that | y| is bounded by a polynomial in | x| and there is a polynomial-time
algorithm to verify that y is a valid certificate for x. The class NP contains an
enormous number of problems from a wide range of fields, including optimiza-
tion, number theory, coding theory, and graph theory. Many of these problems
are not known to be solvable in polynomial time. One of the major open
problems of modern mathematics is whether P equals NP, and it is generally
conjectured that this is not the case.
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An NP-complete problem is, roughly speaking, a hardest problem in NP, in
that if it would be solvable in polynomial time, then each problem in NP would
be solvable in polynomial time, so that P would be equal to NP. Thus, the
NP-completeness of a particular problem is strong evidence that a polynomial-
time algorithm for its solution is unlikely to exist. The principal notion in
defining NP-completeness is that of a reduction. For two decision problems P
and @, we say that P reduces to Q (denoted P« Q) if there exists a
polynomial-time computable function 7 that transforms inputs for P into inputs
for O such that x is a ‘yes’ input for P if and only if 7(x) is a ‘yes’ input for Q.
A problem is NP-complete if it is in NP and every problem in NP reduces to it.
An optimization problem will be called NP-hard if the associated decision
problem is NP-complete.

Cook showed that a natural problem from logic is NP-complete by exhibiting
a ‘master reduction’ from each problem in NP to it. Given one NP-complete
problem P, it is a much easier task to prove the NP-completeness of the next
one, say Q: one need only prove that Q €ENP and that P= Q. The clique
problem is the following problem from graph theory: given a graph G = (V, E)
and an integer k, does there exist a set of vertices C C V such that | C| = k and
for each distinct pair u, vE€C, {u,v} € E? Cook showed that the clique
problem is NP-complete. The wide applicability of the notion of NP-complete-
ness was observed by Karp, who proved that 21 basic problems are NP-
complete.

Although we have thus far ignored all questions of encoding the inputs,
there is one distinction that will play an important role in our discussion. The
natural way to encode integers is to use a binary notation; e.g., 5= (101).
However, one may also consider a unary notation; e.g., 5= (11111). There is
an exponential gap between the lengths of both encodings. In the clique
problem, there are no large integers to be encoded, and so this distinction is
unimportant, but this is not always the case. In the partition problem, the input
consists of n numbers a,,...,a,, and the question is if there exists a subset
SC{1,...,n} such that ¥ ,_sa; = ¥, a,/2. This problem is NP-complete under
a binary encoding. On the other hand, it can be solved by dynamic program-
ming in O(nX,q;) time, which is polynomial under a unary encoding; the
method is therefore called a pseudopolynomial-time algorithm. There are also
‘number problems’ that are NP-complete, even when the numbers are encoded
in unary. In the 3-partition problem, the input consists of 3n integers
a,,...,a,,, and the question is if there exists a partition of {1,..., 3n} into n
3-clement sets S,...,S, such that ¥, ga, =X a/n for i=1,...,n. This
problem remains NP-complete under a unary encoding and is therefore called
strongly NP-complete.

The NP-hardness of an optimization problem suggests that it is impossible to
always find an optimal solution quickly. However, it may still be possible to use
an approximation algorithm to find solutions that are provably close to the
optimum. For a minimization problem f, a p-approximation algorithm (p > 1)
delivers a solution with value at most pf(x) for each input x. Some NP-hard
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problems have a polynomial approximation scheme, which is a family of
algorithms {A,} such that, for each € >0, A_is a polynomial-time (1 + €)-
approximation algorithm. The running time of A_ may depend not only on the
input size but also on the value of €. If it is bounded by a polynomial in | x | and
1/€, then the family is called a fully polynomial approximation scheme.

The notions presented thus far have all been based on a worst-case analysis
of the running time or the quality of the solution delivered. It would be
desirable to understand the behavior for ‘typical’ inputs. To do this it appears
necessary to assume a probability distribution over the inputs. We shall also
discuss results that can be obtained through this sort of probabilistic analysis.

3. A class of deterministic machine scheduling problems

Suppose that m machines M; (i=1,...,m) have to process n jobs J,
(j=1,...,n). A schedule is an allocation of one or more time intervals on one
or more machines to each job. A schedule is feasible if no two time intervals on
the same machine overlap, if no two time intervals allocated to the same job
overlap, and if, in addition, it meets a number of specific requirements
concerning the machine environment and the job characteristics. A schedule is
optimal if it minimizes a given optimality criterion. The machine environment,
the job characteristics and the optimality criterion that together define a
problem type are specified in terms of a three-field classification « | 8 | v, which
is introduced in this section.

3.1. Job data

In the first place, the following data may be specified for each job J:

—a number of operations m;

—a processing requirement p; in the case of single-operation models, or a
collection of processing requirements p,; in the case of multi-operation models;

—a release date r;, on which J’J- becomes available for processing;

- a nondecreasing real cost function f,, measuring the cost f,(¢) incurred if J;
is completed at time ¢;

—a due date d; and a weight w;, that may be used in defining f;.
In general, m;, Dis Piis Tis dj and W, have integral values.

3.2. Machine environment

We now describe the first field a = a, a, specifying the machine environment.
Let o denote the empty symbol.

If ay€{°, P, Q, R}, each J, consists of a single operation that can be
processed on any M,; the processing time of J; on M, will be denoted by p, .
The four values are characterized as follows:
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- a, = °: single machine; p,; = p;;

— a, = P: identical parallel machines; p; = p, for all M;;

—a, = Q: uniform parallel machines; p; = p;/s; for a given speed s; of M;;

— &, = R: unrelated parallel machines; p; = p,/s; for given job-dependent

speeds s; of M,.
If a, =0, we have an open shop, in which each J; consists of a set of
operations {O,,..., O0,;}. O; has to be processed on M, during p,; time units,
but the order in which the operations are executed is immaterial. If o, €
{F, J}, an ordering is imposed on the set of operations corresponding to each
job. If a, = F, we have a flow shop, in which each J; consists of a chain
(0y,- -+, 0,))- O, has to be processed on M, during p,; time units. If a, = J,
we have a job shop, in which each J; consists of a chain (O, ..., Omﬂ.). O, has
to be processed on a given machine p;; during p;; time units, with p; ; # gy
fori=1,...,m;— 1.

If a, is a positive integer, then m is a constant, equal to a,; it is specified as
part of the problem type. If a, = °, then m is a variable, the value of which is
specified as part of the problem instance. Obviously, @, = ° if and only if
a,=1.

3.3. Job characteristics

The second field 8 C {B,, ..., B,} indicates a number of job characteristics,
which are defined as follows.

(1) B, € {pmin, °}.

B, = pmtn: Preemption (job splitting) is allowed: the processing of any
operation may be interrupted and resumed at a later time.

B, = °: No preemption is allowed.

(2) B, = { prec, tree, ° }.

B, = prec. A precedence relation— between the jobs is specified. It is
derived from an acyclic directed graph G with vertex set {(1,...,n}. ¥ G
contains a directed path from j to k, we write J,— J, and require that J; is
completed before J, can start.

B, =tree: G is a rooted tree with either outdegree at most one for each
vertex or indegree at most one for each vertex.

B, = °: No precedence relation is specified.

(3) B E {1, °).

B; = r;: Release dates that may differ per job are specified.

By=rc: Allr;=0.

4) B, {pj - Pi;= 1,2}

By ==L Each job has a unit processing requirement. This will occur only
if a, € {°, P, Q}.

B, = p; = 1: Each operation has unit processing requirement. This will occur
only if ¢, €E{O, F, J}.

B, = °: All p; or p,; are arbitrary nonnegative integers.
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Occasionally, this field will contain additional characteristics such as m; <2
or p; € {1,2}. The interpretation of these should be obvious.

There are many more types of precedence relations than suggested above.
We will encounter generalizations of a rooted tree, such as series—parallel
constraints and opposing forests, special cases of a tree, such as intrees,
outtrees and chains, and other types, such as interval orders and level orders.

3.4. Optimality criteria

The third field y € {f,,,,, Lf;} refers to the optimality criterion. Given a
schedule, we can compute for each J;:

—the completion time CJ-;

— the lateness L, = C, - d,;

— the tardiness T; = max{0, C, — d };

= the unit penalty U, =0 if C;<d,, U; =1 otherwise.
The optimality criteria most commonly chosen involve the minimization of

fmax E {CITI:II’ Lmax} ?
where f = max, .., f;(C;) with f(C))= C,, L;, respectively, or of

X fe{z C,ET,X U,LwC,ZwT, EwJ.Uj} 5

it i

where Lf, = L7, f(C;) with i(G)=C, T;, U, w,C,, w,T,, w, U, respectively.
It should be noted that Lw,C; and Lw,L, differ by a constant Xwd, and
hence are equivalent. Furthermore, any schedule minimizing L, also minim-
izes T, and U, but not vice versa.
The optimal value of y will be denoted by y*, and the value produced by an
(approximation) algorithm A by y(A). If a known upper bound p on y(A)/y*
is best possible in the sense that a class of instances exists for which y(A) /y*

equals or asymptotically approaches p, this will be denoted by a dagger (7).

3.5. Three examples

1| prec| L. is the problem of minimizing maximum lateness on a single
machine subject to general precedence constraints. It can be solved in poly-
nomial time (Section 4).

R| pmm|XC, is the problem of minimizing total completion time on an
arbitrary number of unrelated parallel machines, allowing preemption. Its
complexity is unknown (Section 8).

J3| p,;=1|C,, is the problem of minimizing maximum completion time in
a three-machine job shop with unit processing times. It is NP-hard (Section
14).
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3.6. Reducibility among scheduling problems

Each scheduling problem in the class outlined above corresponds to a
six-tuple (u, ..., us), where u, is a vertex of the graph G, shown in Figure 1
(i=0,...,5). For two problems P = (u,...,us) and Q = (v, ..., vs), we
write P— Q if either u, = v, or G, contains a directed path from u, to v,, for
i=0,...,5. The reader should verify that P— Q implies that the decision
version of P reduces to the decision version of Q. For example, deciding if
L., =k can be reduced to the special case where k = 0, and this is equivalent
to deciding if 77 =0. The graphs thus define elementary reductions between
scheduling problems. It follows that if P— Q and Q is solvable in polynomial
time, then P is solvable in polynomial time, and if P— Q and P is NP-hard,
then Q is NP-hard.

These types of reductions play an instrumental role in the computer program
MspcLAass [Lageweg, Lawler, Lenstra & Rinnooy Kan, 1981, 1982]. The
program records the complexity status of scheduling problems on the basis of
known results and employing simple inference rules as given above. The main
application of MspcrLass concerns a collection of 4536 problems, which only
differs from the class described in this section in that a, is restricted to values
from {1,2,3,}, B, =pmin excludes B,=p,, =1, and B also allows the
specification of deadlines, i.c., strict upper bounds on job completion times. At
present, 417 of these problems are known to be solvable in polynomial time,
3821 have been proved NP-hard, and 298 are still open. With respect to a

[+] [pmun]

[poy=1]

Gy G, Gy Gy Gs

Fig. 1. Problem classification: the graphs G, (i =0,...,35).
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unary encoding, 464 are solvable in pseudopolynomial time, 3588 are strongly
NP-hard, and 484 are open.

PART II. THE SINGLE MACHINE

The single machine case has been the object of extensive research ever since
the seminal work by Jackson [1955] and Smith [1956]. We will survey the
principal results, classifying them according to the optimality criterion in
question. As a general result, we note that, if all = 0, then only schedules
without preemption and without machine idle time need be considered [Con-
way, Maxwell & Miller, 1967].

4. Minmax criteria
4.0. Lawler’s algorithm for 1| prec| f,,..

The problem 1] prec| f,,,, has a particularly simple and elegant solution.
Note that the cost functions of the jobs can be quite arbitrary and different
from one another, provided only that they arc nondecreasing.

Let N={1,2,...,n} be the index set of all jobs, and let L C N be the index
set of jobs without successors. For any subset SC N, let p(S) =X ¢ p; and let
fr.(S) denote the cost of an optimal schedule for the jobs indexed by S.
Clearly, [ . (N) satisfies the following two inequalities:

[ nax(N) = min fi(p(N)) ,

fauN)=fro(N={j}) forall jEN.
Now let J, with / € L be such that

f(p(N)) = min f;(p(N)) -

We have

[ max(N) = max{ fi( p(N)), f n.x(N = {I})} .

But the right-hand side of this inequality is precisely the cost of an optimal
schedule subject to the condition that J, is processed last. It follows that there
exists an optimal schedule in which J, is in the last position. By repeated
application of this rule, one obtains an optimal schedule in O(n”) time. This
algorithm is due to Lawler [1973].
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4.1. Maximum cost

Lawler’s algorithm has been generalized by Baker, Lawler, Lenstra &
Rinnooy Kan [1983] to an O(n?) algorithm for 1| pmin, prec,r; | f,... First, the
release dates are modified such that r;, + p; = r, whenever J;— J,. Next, the
jobs are scheduled in order of nondecreasing release dates; this creates a
number of blocks that can be considered separately. From among the jobs
without successors in a certain block, a job J, that yields minimum cost when
finishing last is selected, the other jobs in the block are rescheduled in order of
nondecreasing release dates, and J, is assigned to the remaining time intervals.
By repeated application of this procedure to each of the resulting subblocks,
one obtains an optimal schedule with at most n — 1 preemptions in O(n*) time.

Monma [1980] considers a generalization of 1| | f,,,.. Let ¢; indicate the
amount of a resource consumed (or, if ¢; <0, contributed) by J;. The problem
is to find a job permutation minimizing the maximum cumulative cost,
max; f,; (B} ¢,)- An NP-hardness proof and polynomial-time algorithms
for special cases are presented.

4.2. Maximum lateness

Although Lenstra, Rinnooy Kan & Brucker [1977] show that the general
1] ri | L,,.. problem is strongly NP-hard, polynomial algorithms exist for the
cases that all r; are equal, all d; arc equal or all p; are equal, and for the
preemptive problem. The first case is solved by a specialization of Lawler’s
method, known as Jackson’s rule [Jackson, 1955]: schedule the jobs in order of
nondecreasing due dates. This rule, which minimizes the maximum tardiness as
well, is also referred to as the earliest due date (EDD) rule. Note that, if any
sequence completes all jobs by their due dates, an EDD sequence does. The
second case is solved similarly by scheduling the jobs in order of nondecreasing
release dates.

Horn [1974] observes that 1|7, p;=1| L, and 1| pmtn,r;| L,,,, are solved
by the extended Jackson’s rule: at any time, schedule an available job with
smallest due date. Frederickson [1983] gives an O(n) algorithm for the case of
unit-time jobs. Simons [1978] presents a more sophisticated approach to solve
the problem 1|r!.,pj.=p[Lm“, where p is an arbitrary integer. Let us first
consider the simpler problem of finding a feasible schedule with respect to
given release dates r; and deadlines 3}.. If application of the extended Jackson’s
rule yields such a schedule, we are finished; otherwise, let J, be the first late job
and let J, be the last job preceding J; such that d, >d,. If J, does not exist,
there is no feasible schedule; otherwise, the only hope of obtaining such a
schedule is to postpone J, by forcing it to yield precedence to the set of jobs
currently between J, and J,. This is achieved by declaring the interval between
the starting time of J, and the smallest release date of this set to be a forbidden
region in which no job is allowed to start and applying the extended Jackson’s
rule again subject to this constraint. Since at each iteration at least one starting
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time of the form r, + kp (1=j, k<n) is excluded, at most n’ iterations will
occur and the feasibility question is answered in O(n’log n) time. Garey,
Johnson, Simons & Tarjan [1981] give an improved implementation that
requires only O(n log n) time. Bisection search over the possible L., values
leads to a polynomial-time algorithm for 1|r.,p,=p|L,...

These three special cases as well as the preemptive variant remain well
solved in the presence of precedence constraints. It suffices to update release
and due dates such that r, <r, and d, < d, whenever J,— J,, as described by
Lageweg, Lenstra & Rinnooy Kan [1976]. Monma [1982] gives a linear-time
algorithm for 1| prec,p, =1|L,,,..

Various elegant enumerative methods exist for solving 1| prec,r,|L,,..
Baker & Su [1974] obtain a lower bound by allowing preemption; their
enumeration scheme simply generates all active schedules, i.e., schedules in
which one cannot decrease the starting time of a job without increasing the
starting time of another one. McMahon & Florian [1975] propose a more
ingenious approach. Lageweg, Lenstra & Rinnooy Kan [1976] slightly modify
this method to obtain very fast solution of quite large problems. Their
algorithm makes use of an equivalent formulation in which due dates are
replaced by delivery times q;, and if a job completes at time C,, it is delivered
at time C, + g;; the aim is to minimize max; C; + q;. The role of release times
and delivery times is completely symmetric. One can take advantage of this
fact and obtain superior performance by interchanging release times and
delivery times under certain conditions. Carlier [1982] and Larson, Dessouky
& Devor [1985] propose different branching rules, which yield more efficient
algorithms for this relatively easy NP-hard problem. Nowicki & Zdrzalka
[1986] observe that in the approach suggested by Carlier, the proof of
optimality may be somewhat more elusive than originally believed. Nowicki &
Smutnicki [1987] provide alternative lower bound procedures. Zdrzalka &
Grabowski [1989] consider extensions of these methods to 1| DIEE R | Fias

Dominance results among the schedules may be used in the obvious way to
speed up enumerative procedures. Erschler, Fontan, Merce & Roubellat [1982,
1983] introduce dominance based on the (r;, d;) intervals, assuming that the
objective is simply to meet all due dates.

Little work has been done on the worst-case analysis of approximation
algorithms for single machine problems. For 1 | 7;| L.y, one must be careful in
specifying the problem, in order to obtain reasonable approximation results.
First, it is possible that L} =0, and any algorithm that may err in such a case
will have unbounded relative error. In fact, deciding if L* <0 is NP-
complete, and so it is probably impossible to completely remove this curious
technicality. Note that by focusing on the special case that r;=0and d, <0 for
all j, this difficulty is avoided. This is identical to viewing the problem in the
delivery time model, since if ¢, = —d,, then C, + q; = C; — d,. Kise, Ibaraki &
Mine [1979] provide another justification for studying this case, by arguing that
the guarantee should be invariant under certain simple transformations of the
input data. Six approximation algorithms are considered, and the extended
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Jackson’s rule (EJ) is shown to guarantee
Lmnx(E‘I);L;ax 52 * (T)

Potts [1980b] presents an iterative version of the extended Jackson’s rule (1)),
and proves that

L,(IN)/Lo, <3, (1)
Although interchanging the roles of the release times and delivery times does
not improve the performance guarantee of algorithms EJ and 1J, Hall &
Shmoys [1992] use it as the essential element of a modification of the latter
algorithm (MIJ) that guarantees

Lmax(MIJ)’HL:mx = % g (T)
The technique of Lageweg, Lenstra & Rinnooy Kan [1976] implies that the

results above extend to the case of precedence constraints. Hall & Shmoys
[1992] also present two algorithms A, and A,, that guarantee

1
Lmux(A.'k)fL:'-:lx =1+ E for I = 1, 2 z (T)

Ay runs in O(n log n + nk'****) time, whereas A, runs in O(Q2*(nk)**?)
time.

5. Total weighted completion time
5.0. Smith’s ratio rule for 1| |Zw,C,

For the problem 1| |Zw,C;, any sequence is optimal that puts the jobs in
order of nondecreasing ratios p;/w; [Smith, 1956]. This rule is established by a
simple interchange argument. Consider a sequence in which the jobs are not in
order of nondecreasing p,/w;. Then there is a job J, that is immediately
preceded by a job J;, with p,/w, > p,/w,. If J, completes at time C,, then J,
completes at time C, — p,. The effect of interchanging these two jobs in the
sequence is to decrease its cost by a positive amount:

[WACy — pi) + Wi Ci] = [we (C, - p;)+w,C]
=Wl T WD,

=ww(p/w, — piIw,)>0.

Hence the sequence cannot be optimal. This confirms Smith’s rule.
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In the special case 1| |ZC;, any sequence is optimal that places the jobs in
order of nondecreasing p,. This shortest processing time or SPT rule is one of
the most celebrated algorithms in sequencing and scheduling. It is often used
for more complicated problems, sometimes without much theoretical support
for its superior performance.

5.1. Decomposable precedence constraints

Smith’s rule can be viewed as an instance of a more general phenomenon.
Consider the following very general problem. Given a set of n jobs and a
real-valued function f that assigns a value f(7) to each permutation 7 of the
job indices, find a permutation 7* such that

f(7*) = min f(m).

If we know nothing about the structure of the function f, there is little that we
can do, except to evaluate f(w) for each of the n! permutations 7. However, it
may be that we are able to establish that there is a transitive and complete
relation =, a quasi-total order, on the index set of the jobs, with the property
that for any two jobs J,, J_ and any permutation of the form abcé, we have

b=c=> flabed)= f(achd) .

If such a job interchange relation < exists, an optimal permutation 7* can be
found by simply ordering the jobs according to =, with O(n log n) comparisons
of jobs with respect to <. Smith’s rule for 1| [Zw,C; and Jackson’s rule for
1| | L., can be seen to be special cases.

In fact, there has been a great deal of work in using this general framework
to provide polynomial-time algorithms for special classes of precedence con-
straints. For tree-like precedence constraints, results of Horn [1972], Adolph-
son & Hu [1973] and Sidney [1975] give O(n log n) algorithms.

The decomposition approach of Sidney [1975] is applicable to a much
broader setting. Most typical is the case of series—parallel precedence con-
straints, for which Lawler [1978a] gives an O(n log n) algorithm. The crucial
observation for each of these cases is that the precedence graph can be broken
down into modules, such that an optimal solution for each module can be
extended to an optimal solution for the entire instance. (For example, a
module can be defined as a set of jobs where each job in the module has the
same relation to jobs outside it.) In order to handle precedence constraints, we
introduce the notion of a string interchange relation that generalizes a job
interchange relation by letting b and ¢, in the implication above, represent
disjoint strings of job indices. We will focus on objective functions that admit
of a string interchange relation; one such function is £ w;C,.

Given a decomposition tree representing the way in which the modules of
the precedence graph are composed, an ordered set of strings is computed for
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each node in the tree, and the ordering at the root yields the optimal solution.
In fact, Buer & Mohring [1983] give an O(n’) algorithm that computes the
decomposition, and Muller & Spinrad [1989] improve the running time to
O(n”). For series-parallel graphs, each leaf of the decomposition tree corre-
sponds to a single job, and each internal node corresponds to cither a series
operation, where all jobs in the first module must precede all jobs in the
second, or a parallel operation, where no precedence constraints are added
between the two modules.

The algorithm works from the bottom of the tree upward, merging sets of
strings in the appropriate way. The one remaining observation needed is that
for a series operation, if the largest string o in the first set (with respect to <)
is bigger than the smallest string o, in the second, then there exists an optimal
ordering which contains o, 0,, and so the two strings can be concatenated. By
iterating this argument, the two sets of strings can be merged correctly.

Lawler [1978a,b], Monma & Sidney [1979], Monma [1981], Sidney [1981],
Lawler & Lenstra [1982] and Monma & Sidney [1987] describe several
axiomatic settings for characterizing results of this sort.

Series-parallel graphs can also be viewed as graphs that are iteratively built
up by substitution from the two-element chain and from two incomparable
elements. Mohring & Radermacher [1985a] generalize this by consider-
ing graphs whose prime (undecomposable) modules are of size k, giving an
O(HP) algorithm to minimize, for example, Zw;C; subject to such precedence
constraints. Sidney & Steiner [1986] improve the running time to On"")
where w denotes the maximum width of a prime module, by applying a more
sophisticated dynamic programming procedure within the decomposition
framework. Monma & Sidney [1987] give a partial characterization of objec-
tives for which this combination of decomposition and dynamic programming
can be applied.

£l

5.2. Arbitrary precedence constraints, release dates and deadlines

Lawler [1978a] and Lenstra & Rinnooy Kan [1978] show that adding
arbitrary precedence constraints results in NP-hardness, even if all p, =1 or all
w,=1. Potts [1980c, 1985c] considers branch and bound methods for
1| prec|Ew,C; and provides empirical evidence that a simple lower bound
heuristic based on Smith’s rule pales in comparison to Lagrangean techniques.

Lenstra, Rinnooy Kan & Brucker [1977] show that if release dates are
specified, 1|7, |ZC, is already strongly NP-hard. Gazmuri [1985] gives a
probabilistic analysis of this problem under the assumption that the processing
times and release times are independently and identically distributed. For each
of two cases characterized by the relation between expected processing time
and expected interarrival time, a heuristic is developed whose relative error
tends to 0 in probability.

In the preemptive case, 1| pmin,r;| £C; can be solved by a simple extension
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of Smith’s rule [Baker, 1974], but, surprisingly, 1| pmin,r;|Zw,C, is strongly
NP-hard [Labetoulle, Lawler, Lenstra & Rinnooy Kan, 1984]. )

If a deadline d; on the completion of each job J;is introduced, 1|d,|£C, can
be solved by another simple extension of Smith’s rule [Smith, 1956], but the
weighted case 1|J,,.|EWJ.C;. is strongly NP-hard [Lenstra, Rinnooy Kan &
Brucker, 1977]. Du & Leung [1988b] establish NP-hardness of
1] pmitn,r,.d, | EC,.

For,| [Ew,C, with either release times or deadlines, several elimination
criteria and branch and bound algorithms have been proposed. Potts & Van
Wassenhove [1983] apply Lagrangean relaxation to the problem with deadlines,
and dualize the constraints C; < d;. The Lagrangean multipliers are adjusted so
that a simple heuristic for the original problem provides an optimal solution to
the relaxed problem. Hariri & Potts [1983] consider the variant with release
times, and dualize the constraints C,=r; + p; instead. Rinaldi & Sassano
[1977], Bianco & Ricciardelli [1982], and Dessouky & Deogun [1981] give
other branch and bound procedures for this problem, based on a variety of
lower bound methods and dominance relations. Posner [1985] and Bagchi &
Ahmadi [1987] give improvements on the lower bound method of Potts & Van
Wassenhove [1983], where in each case, the new heuristic is proved to
dominate the previous methods. Belouadah, Posner & Potts [1989] extend this
approach and use it within a branch and bound algorithm.

6. Weighted number of late jobs
6.0. Karp, Lawler & Moore on 1| |Ew.U.

Karp [1972] included the decision version of 1| |Zw, U, in his list of 21
NP-complete problems. His proof is based on an idea that has been applied to
many other scheduling problems.

Recall the NP-complete partition problem from Section 2: given n numbers
ay,...,a, with £7_, a, = 2b, does there exist a set SC{1,...,n} such that
L,esa,=b? For any instance of this problem, we define an instance of
1| |Zw,U, with n jobs and p, = w, = a, d,=b (j=1,...,n). Consider any
schedule, where we may assume that all the processing is done in the interval
[0, 2b]. The jobs that are completed by time b are on time, the others are late.,
and the Yw; U, value of the schedule is equal to the total processing require-
ment of these late jobs. It follows that, for any schedule, Lw, U, = b. Equality
can be achieved if and only if there exists a set of jobs of total length b, i.e., if
and only if the original instance of the partition problem is a ‘yes’ instance.

Given the complexity status of the partition problem, we know that
1| [Ew,U, is NP-hard in the ordinary sense, and not in the strong sense. In
fact, the latter result is unlikely to hold, as the problem is solvable in
pseudopolynomial time. This was proved by Lawler & Moore [1969], who
proposed a dynamic programming approach.
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We may assume that any schedule is of the following form: first, the on-time
jobs are processed in order of nondecreasing due dates; next, the late jobs are
processed in an arbitrary order. Now suppose that d, <:--=<d,, and let F(r)
denote the minimum criterion value for the first j jobs, subject to the constraint
that the total processing time of the on-time jobs is at most ¢. Initializing the
recursion by

F(t)== fort<0, j=0,...,n,
F(t)=0 fort=0,

we have that

min{F_,(t—=p). F_(1)+w} forO=t=d, 6 |
F;(f)=[f;(dj)' o " fore>d, | Il

The problem is solved by computing F, (X, p;), which requires O(nX,p,) time.
6.1. Further results

An algorithm due to Moore & Hodgson [Moore, 1968] allows the solution of
1] |Z U, in O(n log n) time: jobs are added to the set of on-time jobs in order
of nondecreasing due dates, and if the addition of J; results in this job being
completed after d;, the scheduled job with the largest processing time is
marked to be late and removed. Maxwell [1970] gives an alternative derivation
of this algorithm based on ideas from linear and integer programming. Sidney
[1973] extends the procedure to cover the case in which certain specified jobs
have to be on time. The further generalization in which jobs have to meet
given deadlines occurring at or after their due dates is shown to be NP-hard by
Lawler [1982b]. Lawler [1976a] shows that the Moore-Hodgson algorithm is
casily adapted to solve 1| |Ew U, in O(n log n) time if processing times and
weights are oppositely ordered (l e p,<pp > wW;=w;).

Not surprisingly, 1[r,|ZU, is strongly NP-hard, but Lawler [1982b, -] shows
how to apply dynamic prugrdmmln;, tcchnlqucs to solve 1| pmun,r; |z U, in
O(n”) time and 1| pmin,r, |2 w; U, in o(n’ (Zw, )’) time. Kise, Ibar’akl & Mme
[1978] provide an O(n’) dlgorllhm for 1| r, |TU in the case that release dates
and due dates are similarly ordered (i.e., r,<r, = d,=<d,); Lawler [1982b]
shows that a variation of the Moore-Hodgson algorithm solvcs this problem
in O(nlogn) time. Lawler [-] also obtains O(nlogn) solutions for
1| pmin,r,|Ew;U; in the case that the (r;, d;) intervals are nested and in the
case that release dates and processing times are similarly ordered and in
opposite order of job weights.

Monma [1982] gives an O(n) algorithm for 1| p, = 1| XU,. However, Garey
& Johnson [1976] prove that 1| prec,p;=1|EU, is NP-hard, and Lenstra &
Rinnooy Kan [1980] show that this is true even for chain-like precedence
constraints.
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Villarreal & Bulfin [1983] present a branch and bound procedure for
1] ]Zw;.U;.. Two lower bounds are obtained by applying the algorithms
Moore—Hodgson and Lawler as if, respectively, the weights and processing
times are identical. (Note that in the case of identical processing times, any set
of weights is oppositely ordered.) Potts & Van Wassenhove [1988] give an
O(n log n) algorithm to solve the linear relaxation of a natural integer pro-
gramming formulation of 1| | X w,U,. Computational experiments confirm that
this is an extremely effective lower bound.

Sahni [1976] gives a pseudopolynomial-time algorithm for 1| |Ew),.UJ that
requires O(nXw,) time and uses this to derive an approximation algorithm A,
with O(n’k) running time such that

2w, U(A, )/2 w0t =1~

where U =1—U,. For reasons similar to those discussed in Section 4.2 for
1] A me, it is easier to design approximation algorithms with respect to this
complementary objective. Unlike that case, however, it is possible to decide in
polynomial time whether Zw, U7 =0. Gcns & Levner [1978] exploit this to give
an algorithm B, with runmng umc O(n’k) such that

1
> w}.Uf(B,\,)/Z w Ut <1+ .

k

?:-I'-

By obtaining a preliminary upper bound on the optimum that is within a factor
of 2, Gens & Levner [1981] improve the running time of a variant of B, to
O(n’ log n + n’k). For 1| tree | Lw;U,, Ibarra & Kim [1978] give aigorllhms D,

of order O(kn**?) with the same worst-case error bound as the algorithm A,

due to Sahni [1976].

7. Total tardiness and beyond
7.0. A branch and bound algorithm for 1| |Ej;

Let us first consider the problem with unit processing times, 1| p,=1|Zf,. In
this case, the cost of scheduling J; in position k is given by f;(k), irrespective of
the ordering of the other jobs. The problem is therefore equivalent to finding a
permutation a of {1,..., n} that minimizes X, f(-n'(})) This is a weighted
bipartite matching problem, which can be bO]VCd in O(n*) time.

For the case of arbitrary processing times, Rinnooy Kan, Lageweg & Lenstra
[1975] applied the same idea to compute a lower bound on the costs of an
optimal schedule. Suppose that p, <---=<p, and define t, = p, +---+ p, for
k=1,...,n. Then f(t,) is a lower bound on the cost of scheduling J; in
position k, and an overall lower bound is obtained by solving the weighted
bipartite matching problem with coefficients f(1,).
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They also derived a number of elimination criteria. These are statements of
the following form: if the cost functions and processing times of J; and J, satisty
a certain relationship, then there is an optimal schedule in which J; precedes J, .

Lower bounds and elimination criteria are used to discard partial schedules
that are generated by an enumeration scheme. For 1| |Zf, it is customary to
generate schedules by building them from back to front. That is, at the /th level
of the search tree, jobs are scheduled in the (n—[+1)th position. The
justification for this is that, since the cost functions are nondecreasing, the
larger terms of the optimality criterion are fixed at an early stage while the
smaller terms are estimated by the lower bound.

7.1. Further results

Lawler [1977] gives a pseudopolynomial algorithm for the problem 1 | |ZT;
that runs in O(nJEp;.) time. Recently, Du & Leung [1990] have shown that the
problem is NP-hard in the ordinary sense.

Lenstra & Rinnooy Kan [1978] prove that 1| prec,p,=1|LT, is NP-hard,
and Leung & Young [1989] show that this is true even for chain-like prece-
dence constraints. If we introduce release dates, 1|r,,p,=1|Zw,T; can be
solved as a weighted bipartite matching problem, whereas 1 | r;|ET, is obvious-
ly strongly NP-hard.

Lawler [1977] and Lenstra, Rinnooy Kan & Brucker [1977] show that
1| |Sw,T, is strongly NP-hard. Various enumerative solution methods have
been proposed for this problem. Elmaghraby [1968] presents the first elimina-
tion criteria for the problem, including the observation that any job with due
date exceeding the total processing time can be scheduled last in an optimal
schedule. Emmons [1969] and Shwimer [1972] develop other eclimination
criteria, and Rinnooy Kan, Lageweg & Lenstra [1975] extend these to the case
of arbitrary nondecreasing cost functions. Rachamadugu [1987] gives an elimi-
nation criterion that generates an optimal schedule if there is one in which all
jobs are late.

A variety of lower bounds have been studied. As already discussed in
Section 7.0, Rinnooy Kan, Lageweg & Lenstra [1975] use a linear assignment
relaxation based on an underestimate of the cost of assigning J; to position k,
and Gelders & Kleindorfer [1974, 1975] use a fairly similar relaxation to a
transportation problem. Fisher [1976] proposes a method in which the require-
ment that the machine can process at most one job at a time is relaxed. In this
approach, one attaches ‘prices’ (i.e., Lagrangean multipliers) to each unit-time
interval, and looks for multiplier values for which a cheapest schedule does not
violate the capacity constraint. The resulting algorithm is quite successful on
problems with up to 50 jobs. Potts & Van Wassenhove [1985] observe that a
more efficiently computable but weaker bound may be preferable. They apply
a multiplier adjustment method similar to the one mentioned in Section 5.2;
the constraints T, = C, — d, are relaxed while associated prices for violating
these constraints are introduced.



464 E.L. Lawler et al.

Algorithms based on straightforward but cleverly implemented dynamic
programming offer a surprisingly good alternative. Baker & Schrage [1978] and
Schrage & Baker [1978] suggest compact labeling schemes that can handle up
to 50 jobs. Lawler [1979b] gives a morc efficient implementation of this
approach; Kao & Queyranne [1982] describe carefully designed experiments
which confirm that this method is a practical improvement as well. Potts & Van
Wassenhove [1982] consider the unweighted problem, and use a combination
of the Baker-Schrage algorithm and a decomposition approach implied by the
algorithm of Lawler [1977]. Potts & Van Wassenhove [1987] compare the
dynamic programming algorithms of Schrage & Baker [1978] and Lawler
[1979b], and then consider the relative merits of the decomposition approach
when used in a dynamic programming framework or in an algorithm that, as in
their previous work, resembles branch and bound.

Abdul-Razaq & Potts [1988] consider 1 | |Ej; where the costs are no longer
assumed to be nondecreasing functions of completion time; however, the
constraint that a schedule may not contain idle time is added. Since the
straightforward dynamic programming formulation has an unmanageable num-
ber of states, a lower bound is computed by recursively solving a formulation
with a smaller state space, and then used within a branch and bound pro-
cedure.

Using his pseudopolynomial algorithm for 1| | X7, mentioned above, Lawler
[1982¢] presents a fully polynomial approximation scheme, such that algorithm
A, runs in O(n’k) time and guarantees

. - |
= I!.(Ak)/z Ty oy

Fisher & Kricger [1984] study the following general problem: let P, be a
nonincreasing and concave profit function of the starting time of J;; maximize
the total profit. They use a heuristic based on a generalization of Smith’s rule
(GS) to get provably good solutions:

S p(Gs) /3 Py =3

PART III. PARALLEL MACHINES

Recall from Section 3 the definitions of identical, uniform and unrelated
machines, denoted by P, Q and R, respectively.

Section 8 deals with minsum criteria. We will be able to review some
interesting polynomial-time algorithms, especially for the minimization of XC.
We then turn to minmax criteria. Section 9 considers the nonpreemptive case
with general processing times. The simplest problem of this type, P2| | C,,.., is
already NP-hard, and we will concentrate on the analysis of approximation
algorithms. Section 10 considers the preemptive case. The situation is much
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brighter here, and we will mention a number of polynomial-time algorithms for
the minimization of C,, and L_,. , even subject to release dates. Finally,
Section 11 deals with the presence of precedence constraints, with an emphasis
on unit-time or preemptable jobs. The more general problems in this section
are NP-hard and will lead us again to investigate the performance of approxi-
mation algorithms. However, several special cases turn out to be solvable in

polynomial time.

8. Minsum criteria

8.0. A bipartite matching formulation for R| |£C,

Horn [1973] and Bruno, Coffman & Sethi [1974] formulated R| |EC; as an
integer programming problem. The structure of this program is such that it can
be solved in polynomial time.

Consider the jobs that are to be performed by a single machine M,, and for
simplicity suppose that these are J,, J,,.... J, in that order. For these jobs we
have XC; =Ip,, + (I = 1)p;; + - - - + p;;. In general, EC; is a weighted sum of p;
values, where the weight of p, is equal to the number of jobs to whose
completion time it contributes. We now describe schedules in terms of 0-1
variables x,, ;, where x,, ;= 1if J; is the kth last job processed on M;, and
X ()., = 0 otherwise. The problem is then to minimize

2D kpiXiry.

ik
subject to
El‘ifﬂ‘)-f:l forj=1,u0.nt,
ik
Zx(,-k,_jﬁl for i=1,ceuytiy B= 1y ¥y
]

x{ik}.je{(}*l} fori=1,...,m, j,k=1,...,n.

The constraints ensure that each job is scheduled exactly once and that each
position on each machine is occupied by at most one job. This is a weighted
bipartite matching problem, so that the integrality constraints can be replaced
by nonnegativity constraints without altering the feasible set. This matching
problem can be solved in O(n*) time.

A similar approach yields O(n log n) algorithms for P| [£C,and Q| |ZC;.
In the case of identical machines, ¥ C, is a weighted sum of p; values, where
each weight is an integer between 1 and n, and no weight may be used more
than m times. It is obviously optimal to match the smallest weights with the
largest processing requirements. This is precisely what the generalized SPT rule
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of Conway, Maxwell & Miller [1967] accomplishes: schedule the jobs in order
of nondecreasing processing times, and assign each job to the earliest available
machine.

In the case of uniform machines, £ C, is a weighted sum of p, values, where
each weight is of the form k/s; (k indicating the position and s, the speed of
M;), and no weight may be used more than once. Once again, we want to
select the n smallest of these mn weights and to match the smallest weights
with the longest jobs. Horowitz & Sahni [1976] propose to maintain a priority
queue of the smallest m unused weights and to build the schedule backwards
by assigning the next longest job to the machine associated with the smallest
available weight. This algorithm can be implemented to run in O(n log n) time.

8.1. Unit-length jobs on uniform machines

The problems Q | p, = =1]| f,.. are easily solved in polyno-
mial time. First, observe that there exists an optimal schedule in which the jobs
are executed in the time periods with the n earliest possible completion times.
These completion times can be generated in O(n log m) time: initialize a
priority queue with completion times 1/s; (i=1,...,m); at a general step,
remove the smallest completion time from the queue and, if this time is k/s,,
insert (k + 1) /s, into the queue. Let ¢,, ..., t, denote the n smallest completion
times, in nondecreasing order.

Q| p;=1|Zf, is now solved by finding an optimal assignment of the jobs to
these completion times. This amounts to formulating and solving an n X n
weighted blparlllc matching problem with cost coefficients ¢, = f,(#;); this
requires O(n’) time. Various special cases can be solved more efﬁ(:lently Thus
Q| p,=1|Zw,C; is solved by assigning the job with the kth largest weight to
ty, and Q| p, = i | £T, is solved by assigning the job with the kth smallest due
date to 1, the time rcqu1rcd is O(n log n), the time needed to sort weights or
due dates. Q| =1 | Lw; U, is solved by considering the completion times from
largest to smallest and scheduling, from among all unassigned jobs that would
be on time (if any), a job with maximal weight; with appropriate use of priority
queues, this can again be done in O(n log n) time. In the prc%ence of release
dates, dynamlc programming can be applied to solve Q | =1|LZC; in
O(m’n*"*'log n) time, which is polynomial only for fixed valucs of m.

Q] P; = 1| frax is solved by a method that resembles Lawler’s algorithm for
1| | f,.x (see Section 4.0). Consider the completion times from largest to
smallest and, at each successive completion time 1, schedule a job J, for which
f;(r) is minimal: this yields an optimal schedule in O(n ) time. Q | pi=1 L.
and Q| r,,p; = 1] C,,, can be solved in O(n log n) time be simply mdtchmg the
kth smdllest due date, or release date, with ¢,.

These results are due to Lawler [-], and Dessouky, Lageweg, Lenstra and
Van de Velde [1990]. Lawler [1976a] shows that the special case P| p,=1|ZU;
can be solved in O(n log n) time.

Complexity results for the precedence-constrained problem P| prec,
p,=1|ZC, and its special cases will be mentioned in Section 11.1.

BANS SAAMUE
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8.2. Minsum criteria without preemption

We have seen that R| |EC; is solvable in polynomial time. Meilijson &
Tamir [1984] show that the SPT rule remains optimal for identical machines
that increase in speed over time. On the other hand, if the speed decreases,
then the problem is NP-hard.

In the case of arbitrary processing requirements, it seems fruitless to attempt
to find polynomial algorithms for more general criteria or for LC; problems
with additional constraints, even when there are only two identical machines.
P2| |Zw,C, is already NP-hard [Bruno, Coffman & Sethi, 1974; Lenstra,
Rinnooy Kan & Brucker, 1977], and so is P2|tree | £ C,, for intrees as well as
outtrees [Sethi, 1977] and even for chains [Du, Leung & Young, 1991]. The
specification of due dates or release dates does not leave much hope cither, as
both P2| | C,,, and 1|r,[XC, are NP-hard. In this section, we will therefore
be concerned with approximation in polynomial time and with optimization by
implicit enumeration.

With respect to P | |§Iw;.Cj., an obvious idea is to list the jobs according to
nondecreasing ratios p,/w;, as specified by Smith’s rule for the single-machine
case (see Section 5.0), and to schedule the next job whenever a machine
becomes available. Eastman, Even & Isaacs [1964] show that this largest ratio
(LR) rule gives

. 1 n ; n
SwCR -1 Zwp > (2 S wp -2 wp). @)
I
It follows from this inequality that

m+n & 4
= —— ..
> w;C] min+ 1) %,1 :(2‘1 W, Py

This lower bound has been the basis for the branch and bound algorithms of
Elmaghraby & Park [1974], Barnes & Brennan [1977], and Sarin, Ahn &
Bishop [1988]. Kawaguchi & Kyan [1986] have refined the analysis of these
bounds to prove that

3 w,CG(LR) /3 w,C; < \/5; 4, ()

Sahni [1976] constructs algorithms A, (in the same spirit as his approach for
1| [Ew,U, mentioned in Section 6.1) with O(n(n’k)" ') running time for
which

- 1
> w,q.(Ak)/z, wCp =1+ 7.

For m =2, the running time of A, can be improved to O(n’k).
A general dynamic programming technique of Rothkopf [1966] and Lawler
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& Moore [1969] is applicable to special cases of R| |Ef; and R | | ...« in which
the following condition is satisfied: it is possible to index the jobs in such a way
that the jobs assigned to a given machine can be assumed to be processed in
order of their indices. For example, this condition holds in the case of
R| | C,., (any indexing is satisfactory), R| |[Zw U, (index in order of due
dates), and Q| |Zw,C, (index in order of the ratios p,/w;).

Given an appropriate indexing of the jobs, define Fi(t,..., t,) as the
minimum cost of a schedule without idle time for J,...,J subject to the
constraint that the last job on M, is completed at time ¢, for i=1,..., m.
Then, in the case of f . criteria,

max
Fi(ty, oo t,)= min max{f(t,), F;_\(t, -, ;= Py - £}
and in the case of Eﬁ criteria,

F;(’l* sacsy By} = |m;lr!” (f;(f;) + Fj—l(fl" cosdy T P s )
In both cases, the initial conditions are

Fi(ti, .t ):{U iff,-={}‘f0ri=l,.‘..m,

QR tm % otherwise .
These equations can be solved in O(mnC™) time, where C is an upper bound
on the completion time of any job in an optimal schedule. If the machines are
uniform, then only m—1 of the values ¢,,...,t, in the equation for
F.(t,,...,1,) are independent. This means, for example, that the time bound
for Q| |Zw,C, can be reduced by a factor of C to O(mnC" ).

One variation of the above technique solves Q|r;|C,,,. and another
variation solves Q| |Zw U, in O(mn(max,d;)") time. Still other dynamic
programming approaches can be used to solve P| |Ef and P| |, in
O(m - min{3", n2"C}) time.

8.3. Minsum criteria with preemption

A theorem of McNaughton [1959] states that for P | pmen | X w,C; there is no
schedule with a finite number of preemptions which yields a smaller criterion
value than an optimal nonpreemptive schedule. The finiteness restriction can
be removed by appropriate application of results from open shop theory. It
therefore follows that the procedure of Section 8.0 solves P| pmtn|LC, in
O(n log n) time, and that P2| pmn |Zw,C; is NP-hard. Du, Leung & Young
[1991] extend McNaughton’s theorem to the case of chain-like precedence
constraints, which implies that P2| pmin,tree|£C; is strongly NP-hard.

McNaughton’s theorem does not apply to uniform machines, as can be
demonstrated by a simple counterexample. There is, however, a polynomial
algorithm for Q | pmin | £C;. Lawler & Labetoulle [1978] show that there exists
an optimal preemptive schedule in which C; < C, if p;<p,. This result is the
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essence of the correctness proof of the following algorithm of Gonzalez [1977].
First place the jobs in SPT order. Then obtain an optimal schedule by
preemptively scheduling each successive job in the available time on the m
machines so as to minimize its completion time. This procedure can be
implemented to run in O(n log n + mn) time and yields an optimal schedule
with no more than (m — 1)(n — 3m) preemptions. Gonzalez also extends it to
cover the case in which L C; is to be minimized subject to a common deadline
for all jobs. McCormick & Pinedo [1989] extend this to handle the problem of
minimizing wC, . + X C, for an arbitrary weight w = 0.

Very little is known about R | pmin | XC;. This remains one of the more
vexing questions in the area of preemptive scheduling. One approach has been
to apply the techniques of Lawler & Labetoulle [1978] to show that if the
optimal order of completion times is known, then an optimal solution can be
constructed in polynomial time.

The problems 1| pmin | Lw,U, (see Section 6.0) and P| pmtn| LU, are both
NP-hard in the ordinary sense; the latter result is due to Lawler [1983]. Lawler
[1979a] also shows that, for any fixed number of uniform machines,
Om | pmin | ij.Uj can be solved in pseudopolynomial time: O(":(ij)z) if
m=2 and O(n”" °(Sw,)’) if m=3. Hence, Qm| pmin|LU, is solvable in
strictly polynomial time. Lawler & Martel [1989] give an improved algorithm
for m =2 that runs in O(nlej) time, and also use this algorithm to derive a
fully polynomial approximation scheme for Q2| pmin|Zw,U,. The remaining
minimal open problems are R2| pmin|LU; and, only with respect to a unary
encoding, P| pmin | XU,

We know from Section 7.1 that | pmm|ET, and 1| pmin|Zw,T, are
NP-hard in the ordinary sense and in the strong sense, respectively. With
respect to a unary encoding, P2 | pmin | LT, is open.

In the presence of release dates, NP-hardness has been established for
P2| pmmn,r;|C, [Du, Leung & Young, 1988], P2| pmtn,r,|EU, [Du, Leung
& Wong, 1989].

9. Minmax criteria without preemption
9.0. The performance of list scheduling for P| | C,,.

Although P| | C,,.. is strongly NP-hard [Garey & Johnson, 1978], there are
simple procedures to construct schedules that are provably close to optimal.
Consider the list scheduling (LS) rule, which schedules the next available job in
some prespecified list whenever a machine becomes idle.

In the carliest paper on the worst-case analysis of approximation algorithms,
Graham [1966] proves that, for any instance,

¥ T i
Cmux(LS)'ﬂr(’m;ux =2 m (T)
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To see this, let J, be the last job to be completed in a list schedule, and note
that no machine can be idle before time t=C,, (LS)— p,, when J, starts
processing. Intuitively, the performance guarantee follows from the observa-
tion that both t and p, are lower bounds on the length of any schedule. More

formally, we have X, p, = mt and therefore
1 1 m—1
=t+p<— +p == +— p,.
Cmux(LS) t Py m Ep; pl‘ m ; p; m Py
The observations that
C* = i 2 C* -
max"m . pj’ max = Pr s

now yield the desired result.

The bound is tight for any value of m, as is shown by the following class of
instances. Letn=m(m—1)+1,p,=---=p,_, =1, p, = m, and consider the
list (J,, J,,...,J,)- Itis not hard to see that C,, (LS)=2m —1and C}_, = m.

The worst-case analysis also gives insight into the average-case performance
of list scheduling. We know that, for any instance,

Conn(LS)/ €l = 1+ (m— Dimax,p, /3 p,
j_

In order to give a probabilistic analysis of list scheduling, we assume that the
processing times p; are selected from a given probability distribution, and we
study the error term under this distribution. (Note that random variables are
printed in boldface italic.) For the case that the p, are independently and

uniformly distributed over the interval [0, 1], Bruno & Downey [1986] show
that

lim Pr[mux p;./z p; >4fn] =0.
n—= i i

In other words, as long as n grows faster than m, list schedules are asymp-
totically optimal in probability.

9.1. Identical machines

By far the most studied scheduling model from the viewpoint of approxi-
mation algorithms is P| | C,,.. Garey, Graham & Johnson [1978] and Cof-
fman, Lueker & Rinnooy Kan [1988] give easily readable introductions into the
techniques involved in, respectively, the worst-case and probabilistic analysis of
approximation algorithms.

In the previous section, we have seen that list scheduling is guaranteed to
produce a schedule with maximum completion time less than twice the optimal.
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Since there always is a list ordering for which this simple heuristic produces an
optimal schedule, it is natural to consider refinements of the approach.
Graham [1969] shows that, if the jobs are selected in longest processing time
(LPT) order, then the bound can be considerably improved:

* 4 ]' BN
Ci(LPTY/ Chgy = 3 =G (+)
A somewhat better algorithm, called multifit (MF) and based on a complete-
ly different principle, is due to Coffman, Garey & Johnson [1978]. The idea
behind MF is to find (by binary search) the smallest ‘capacity’ that a set of m
‘bins’ can have and still accommodate all jobs when the jobs are taken in order
of nonincreasing p; and each job is placed into the first bin into which it will fit.
The set of jobs in the ith bin will be processed by M,. Coffman, Garey &
Johnsons show that, if k packing attempts are made, the algorithm (denoted by
MF, ) runs in time O(n log n + kn log m) and satisfies
C...(MF)/C,. <1.22+427",
Friesen [1984] subsequently improves this bound from 1.22 to 1.2. Yue [1990]
improves it to {7, which is tight. The procedure executed within the binary
search ‘loop’ can be viewed as an approximation algorithm for packing a set of
jobs in the fewest number bins of a given capacity. If a more primitive
algorithm is used for this, where the jobs are not ordered by decreasing p,,
then all that can be guaranteed is

Caix(MF)I Gy =2 = ()

max m + l "

Friesen & Langston [1986] refine the iterated approximation algorithm to
provide algorithms MF, with running time O(n log n + kn log m) (where the
constant embedded within the ‘big Oh’ notation is big indeed) that guarantee
CmﬂK(MF;)J{C:'HIX 5\- % + 2_!( - (T)

The following algorithm Z, is due to Graham [1969]: schedule the k largest
jobs optimally, then list schedule the remaining jobs arbitrarily. Graham shows

that
? ool +(1———1)/(1+l—kJ)
Cmax{zk)fcmax = 1 m m ’

and that when m divides k, this is best possible. By selecting k = m/e, we
obtain an algorithm with worst-case performance ratio less than 1+ e. Un-
fortunately, the best bound on the running time is O(n*"). Thus, for any fixed
number of machines, this family of algorithms is a polynomial approximation
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scheme. Sahni [1976] has improved this result, by devising algorithms A, with
O(n(n’k)™ ') running time which satisfy
1

nnv((A );le\ 5 1 + E k

For any fixed number of machines, these algorithms constitute a fully poly-
nomial apprommatlon scheme. For m =2, algorithm A, can be improved to
run in time O(n’k). As in the cases of 1| | Zw, U, (Sectlon 6.1) and P| |Zw,C,
(Section 8.2), the algorithms A, are based on a ClL\-’Ll’ combination of dyndmlc
programming and rounding and are beyond the scope of the present discussion.

Hochbaum & Shmoys [1987] use a variation on the multifit approach to
provide a polynomial approximation scheme for P| | C, .., which replaces a
(traditional) approximation algorithm in the binary search with a dual approxi-
mation algorithm. Given a capacity d and a set of jobs to pack, a p-dual
approximation algorithm (p >1) produces a packing that uses at most the
minimum number of bins of capacity d, but the packing may use bins of
capacity pd. Using a p-dual dpprommal:on algorithm within binary search for &
itcrations, one obtains a (p +2 *)-approximation algorithm for P| | C, ..
Hochbaum and Shmoys further provide a family of algorithms D, , such that D,
is a (1+ 1/k)-dual approximation algorithm and has running time O((kn)*);
Leung [1991] improves the running time to O((kn)*'***). For k=35 and
k =6, Hochbaum & Shmoys refine their approach to obtain algorithms with
O(n log n) and O(n(m” + log n)) running times, respectively. Since P| | C,_ is
strongly NP-hard, there is no fully polynomial approximation scheme for it
unless P = NP.

Several bounds are available which take into account the processing times of
the jobs. Recall that the probabilistic analysis discussed in Section 9.0 relies on
such a (worst-case) bound for list scheduling. Achugbue & Chin [1981] prove
two results relating the performance ratio of list scheduling to the value of
7 =max,p,/min p,. If 7 <3, then

: ifirm =3 4.
17 .
o iftm=5,
:nu(LS);lex"“ 1 A (T)
-m ifm=6,
and if =2,
; ifm=2,3,
c* = 1 .
m ‘X(LS)‘# max ‘_j‘ 7 m lf m _24 . (T)

For the case of LPT, Ibarra & Kim [1977] prove that
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2(m -1
C,.(LPT)/C:, <1+ —("—’n——z for n=2(m— 1) .

Significantly less is known about the worst-case performance of approxi-
mation algorithms for other minmax criteria. Gusfield [1984] considers the
problem P|r,| L., and proves that for the EDD rule (see Section 4.1),

2m |
(EDD)- L, < o max; p, . (1)

ll'I'IK

As in the single machine case, it is natural to consider the relative error in the
delivery time model. The translation of the previous bound into this setting
provides an unnecessarily weak guarantee. By using a simple extension of the
argument of Graham [1966], Hall & Shmoys [1989] observe that

I‘ll‘IX(LS)fLITI'I¥ 2 (T)
They also develop a polynomial approximation scheme for this problem.
Carlier [1987] gives an enumerative method for P|r,|L,,,. Simons [1983]
shows that an interesting special case, P|r ri Py = p|L,... can be solved in
polynomial time. Simons & Warmuth [1989] give an improved O(mn”) algo-
rithm based on a gencralization of the approach of Garey, Johnson, Simons &
Tarjan [1981]. No approximation results are known for minimizing C_ . with
both release times and deadlines; Bratley, Florian & Robillard [1975] give an
enumerative method for this problem.

The simple probabilistic analysis of list scheduling that was discussed in
Section 8.0 is also just a first step in a series of results in this area. For
example, the bounds of Bruno & Downey [1986] were refined and extended to
other distributions by Coffman & Gilbert [1985].

Probabilistic analysis also supports the claim that the LPT heuristic performs
better than arbitrary list scheduling. Unlike the relative error of list scheduling,
the absolute error C,, (LS) — Cp.., does not tend to 0 as n— = (with m fixed).
Coffman, Flatto & Lueker []984] observe that, if I(LPT) denotes the total idle
time in an LPT schedule, then the absolute error is at most I(LPT)/m. For
processing times selected independently and uniformly from [0, 1], they prove
that E[I(LPT)] < ¢,,m’/(n + 1), where c,, is bounded and lim,,_,.c,, = 1.

Loulou [1984] and Frenk & Rmnooy Kan [1987] both base their analyses of
LPT on the cliffcrcnu: Cpnax(LPT) = X, p,/m, which is an upper bound on

C,...(LPT) — C,.... Loulou shows that, lf the processing times are independent
and identically distributed with finite mean, then, for any fixed m =2, the
absolute error of LPT is stochastically smaller than a fixed random variable
that does not depend on n. Frenk & Rinnooy Kan consider the general
situation where the processing times are independently drawn from a dis-
tribution that has finite second moment and positive density at zero. They
prove that the absolute error converges to 0 not only in expectation but even
almost surely; that is, Prlim,__.C, (LPT) - =0]=1.

m ax
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Given that the absolute error of the LPT rule approaches 0, a further issue is
the rate at which the error converges to 0. Boxma [1984] and Frenk & Rinnooy
Kan [1986] show that under a broad range of distributions, the expected
absolute error is O(n “) for some positive constant ¢. Karmarkar & Karp
[1982] suggest an entirely different approach, the differencing method, and
prove that with probability approaching 1, the difference between the comple-
tion times of the last and first machines is O(n “'**") for some positive c.
Fischetti & Martello [1987] give a worst-case analysis of this heuristic for
P2| | C,.. and prove that it is a ;-approximation algorithm.,

9.2. Uniform machines

Many of the results in the previous section can be generalized to the uniform
machine model. The initial work in this area is due to Liu & Liu [1974a,b,c],
who consider arbitrary list scheduling as well as a natural extension of the
scheme of Graham that optimally schedules the k longest jobs and then uses
list scheduling on the remaining jobs. The performance of these algorithms on
uniform machines is significantly worse; for example,

Coax(LS)/Cr =1+ max s;/min s; — max s,./z 8 ()
The most natural way to implement list scheduling on uniform machines is to
assign the next job on the list to any machine that becomes idle. However, this
produces schedules without unforced idleness, and the optimal schedule might
require such idle time. Another implementation LS’ is studied by Cho & Sahni

[1980], where the next job in the list is scheduled on the machine on which it
will finish earliest. They prove that

T (1+V5)/2 form=2,
Conax(LS)/ C e =< [(1 +(VZm=2)/2 form>2.
The bound is tight for m = 6, but in general, the worst known examples have a
performance ratio of [(log,(3m — 1) + 1)/2]. This approach followed the work
of Gonzalez, Ibarra & Sahni [1977], who consider the analogous generalization
LPT" of LPT and show that

2
[ * - =)
Cos(LFT) Gl 2= =

Dobson [1984] and Friesen [1987] improve this analysis to obtain an upper
bound of {3, and also provide examples that have performance ratio 1.52.
Morrison [1988] shows that LPT is better than LS, in that

Cppon(LPT)/C},, < max{maxs,/(2mins,), 2} . (1)
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Friesen & Langston [1983] extend the multifit approach to uniform pro-
cessors. They prove that, if the bins are ordered in increasing size for each
iteration of the binary search, then

Cmax(MFk)"{C:mx <14+ 2_‘( ?

and that there exists an example that has performance ratio 1.341. They also
show that the decision to order the bins by increasing size is the correct one,
since for decreasing bin sizes there exist examples with performance ratio 3.

Horowitz & Sahni [1976] give a family of algorithms A, with running time
O(n*"k™ ") such that

1
Cm;lx(Ak)iC:mx‘s‘ 1 + Z L
so that for any fixed value of m, this is a fully polynomial approximation
scheme. Extending their dual approximation approach for identical machines,
Hochbaum & Shmoys [1988] give a polynomial approximation scheme, where
algorithm D, has running time O(mn'"™ *?) and
Cm;,,‘(Dk)XC* =]+

max

1=

For small values of k, the efficiency of this scheme can be improved; Hoch-
baum & Shmoys provide algorithms with performance guarantee arbitrarily
close to 3 that run in O(n log n + m) time.

The probabilistic results of Frenk & Rinnooy Kan [1986, 1987] also extend to
the case of uniform machines. In fact, the naive implementation of the LPT
rule (as opposed to the algorithm LPT’ that was discussed above) produces
schedules in which the absolute error converges in expectation and almost
surely to 0.

9.3, Unrelated machines

Unrelated parallel machine problems are perceived to be significantly harder
than uniform machine problems, and results concerning the worst-case analysis
of approximation algorithms substantiate this distinction. Lenstra, Shmoys &
Tardos [1990] show that it is NP-complete to decide if there is a feasible
schedule of length 2 for instances of R| | C,,,,- This implies that there does not
exist a polynomial-time p-approximation algorithm with p < 3 unless P = NP.
Although this excludes the possibility of a polynomial approximation scheme,
Horowitz & Sahni [1976] show that for any fixed number of machines, there is
a fully polynomial approximation scheme.

Ibarra & Kim [1977] show that a variety of simple algorithms perform
discouragingly poorly; in fact, they were only able to prove that these methods
were m-approximation algorithms. The first substantial improvement of this
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bound is due to Davis & Jaffe [1981], who give a variant of a list scheduling
algorithm for which

1
. VCmx <2.5VAi + 1+ —— |
Crax(LS")/C . <=2.5vm+ 1 N

and also provide examples that show that this analysis is tight up to a constant
factor.
Potts [1985a] proposes an algorithm based on linear programming (LP), the
running time of which is polynomial only for fixed m. He proves
G LEWES, 553, ()
In contrast to the scheme of Horowitz & Sahni, this is a practical algorithm for
a modest number of machines, since the space requirements do not grow
exponentially in the number of machines. Lenstra, Shmoys & Tardos [1990]

extend this approach in two ways. First, they give a modified algorithm LP’
that runs in polynomial time and still satisfies

("r:m)\:(]“]:'lr)'Jr C:lilx < 2 " (T)

Second, for a fixed number of machines, they give a polynomial approximation
scheme, based on a combination of enumeration of partial schedules and linear
programming, which has only modest space requirements.

10. Minmax criteria with preemption
10.0. McNaughton’s wrap-around rule for P| pmn | C...

McNaughton’s [1959] solution of P | pmn | C,,,_ is probably the simplest and
carliest instance of an approach that has been successfully applied to other
preemptive scheduling problems: we first provide an obvious lower bound on
the value of an optimal schedule and then construct a schedule that matches
this bound.

In this case, we see that the maximum completion time of any schedule is at

least
max{max P (2 pj)/m} ;
!

I

A schedule meeting this bound can be constructed in O(n) time: just fill the
machines successively, scheduling the jobs in any order and splitting a job
whenever the above time bound is met. The number of preemptions occurring
in this schedule is at most m — 1, and it is possible to design a class of problems
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for which any optimal schedule has at least this many preemptions. It is not

hard to see that the problem of minimizing the number of preemptions is
NP-hard.

10.1. Maximum completion time on uniform and unrelated machines

For Q| pmin|C,,,., the length of any schedule is at least

max?

k K n m

max| max X p /25,2 p /D),

I=ksmc=l o) i=1  j=1 i=1

where p,=---=p, and s, =---=y, . This generalizes the lower bound given
in the previous section,

Horvath, Lam & Sethi [1977] prove that this bound is met by a preemptive
variant of the LPT rule, which, at each point in time, assigns the jobs with the
largest remaining processing requirement to the fastest available processors.
The algorithm runs in O(mn”) time and generates an optimal schedule with no
more than (m — 1)n’ preemptions.

Gonzalez & Sahni [1978b] give a more efficient algorithm. It requires O(n)
time, if the jobs are given in order of nonincreasing p; and the machines in
order of nonincreasing s,; without this assumption, the running time increases
only to O(n + mlog m). The procedure yields an optimal schedule with no
more than 2(m — 1) preemptions, which is a tight bound.

Lawler & Labetoulle [1978] show that many preemptive scheduling problems
involving independent jobs on unrelated machines can be formulated as linear
programming problems. For R| pmin|C,,,.. the length of any schedule is at

least equal to the minimum value of C subject to

2xlp;=1 forj=1,...,n,

ZXU-L‘?C forj=1,...,n,

zx,-jEC fori=1,...,m,

.

x.=0 fori=1,...,m, j=1,...,n.

In this formulation, x,; represents the total time spent by J, on M,. The lincar
program can be solved in polynomial time [Khachiyan, 1979]. A feasible
schedule for which C,,, equals the optimal value of C can be constructed in
polynomial time by applying the algorithm for O | pmin| C,,,,, discussed in
Section 12.2. This procedure can be modified to yield an optimal schedule with
no more than about 7m°/2 preemptions. It remains an open question as to
whether there is some constant ¢ > 0 such that cm” preemptions are necessary
for an optimal preemptive schedule.

For fixed m, it seems to be possible to solve the linear program in linear



478 E.L. Lawler et al.

time. Certainly, Gonzalez, Lawler & Sahni [1990] show how to solve the
special case R2| pmin | C,,, in O(n) time.

10.2. Release dates, due dates, and other complications

Horn [1974] gives a procedure to solve P| pmtn | L, and P| pmin,r,|C,..
in O(n’) time. Gonzalez & Johnson [1980] give a more efficient algorithm that
uses only O(mn) time.

More generally, Horn [1974] shows that the existence of a feasible preemp-
tive schedule with given release dates and deadlines can be tested by means of
a network flow model in O(n’) time. A binary search can then be conducted
on the optimal value of L ., with cach trial value of L inducing deadlines
that are checked for feasibility by means of the network computation.
Labetoulle, Lawler, Lenstra & Rinnooy Kan [1984] show that this yields an
O(n’min{n’, log n + log max; p;}) algorithm.

Other restrictions on allowable preemptive schedules have been investigated.
Schmidt [1983] considers the case where the machines are only available in
certain given time intervals, and shows that the existence of a feasible
preemptive schedule can be tested in polynomial time. Rayward-Smith [1987b]
studies the situation where a delay of k time units is incurred when a job is
preempted from one machine to another. He observes that imposing such
delays on identical machines increases C by at most k — 1. Thus, for k =1,
the problem is solvable in polynomial time by McNaughton’s rule. Surprisingly,
for any fixed k =2, the problem is NP-hard.

In the case of uniform machines, Sahni & Cho [1980] show how to test the
existence of a feasible preemptive schedule with given release dates and a
common deadline in O(nlog n + mn) time; the algorithm generates O(mn)
preemptions in the worst case. More generally, Sahni & Cho [1979b] and
Labetoulle, Lawler, Lenstra & Rinnooy Kan [1984] show that
Q| pmin,r;|C, .. and, by symmetry, Q|pmin|L,, are solvable in
O(n log n + mn) time, where the number of preemptions generated is O(mn).

The feasibility test of Horn mentioned above has been adapted by Bruno &
Gonzalez [1976] to the case of two uniform machines and cxtended to a
polynomial-time algorithm for Q2| pmtn,r,| L,,,, by Labetoulle, Lawler, Len-
stra & Rinnooy Kan [1984].

Martel [1982] presents a polynomial-time algorithm for Q | pmin.r,| L. .
His method is in fact a special case of a more general algorithm of Lawler &
Martel [1982] for computing maximal polymatroidal network flows. Federgruen
& Groenevelt [1986] give an improved algorithm for the problem by reducing it
to the ordinary maximum flow problem; if there are machines of ¢ distinct
speeds (and so 1= m), their algorithm runs in O(tn’) time.

The technique of Lawler & Labetoulle [1978] also yields a polynomial-time
algorithm based on linear programming for R | pmm,r,| L.,

max
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11. Precedence constraints
11.0. An NP-hardness proof for P| prec,p; =1 LE. ..,

The first NP-hardness proof for P| prec,p, =1 | Cpar is due to Ullman
[1975]. Lenstra & Rinnooy Kan [1978] show that even the problem of deciding
if there exists a feasible schedule of length at most 3 is NP-complete; the proof
is given below. This result implies that, for P| prec,p, = 1| C,,,. there is no
polynomial p-approximation algorithm for any p < 3, unless P = NP. Note that
it is trivial to decide if a feasible schedule of length 2 exists.

Recall the NP-complete clique problem from Section 2: given a graph
G = (V, E) and an integer k, does G have a clique (i.e., a complete subgraph)
on k vertices? We denote the number of edges in a clique of size k by
[=k(k —1)/2, and we define k' =|V |-k, I'=| E|— L For any instance of
the clique problem, we construct a corresponding instance of P| prec,
p,=1|C,.,. The number of machines is given by m = max{k, [+, I'y+1.
We introduce a job J, for every vertex v € V and a job J, for every edge ¢ € E,
with J,— J, whenever v is an endpoint of e. We also need dummy jobs X,
(x=1,....m—k), Y, (y=1,...,m—1-k') and Z. (2= 1y — 1),
with X — Y, — Z_ for all x, y, z. Note that the total number of jobs is 3m.

The reduction is illustrated in Figure 2. The basic idea is the following. In
any schedule of length 3 for the dummy jobs, there is a certain pattern of idle
machines that are available for the vertex and edge jobs. This pattern is chosen
such that a complete feasible schedule of length 3 exists if and only if there is a
clique of size k.

m=
Iy —;/-;.J«
—
J;f —=J} —
TG Ja| I | Ja
G it
% Jy | J | J
J.q_\_ﬁh—;'.;‘j ——
'““H\\% J.q Jd Z]
Js =
X'| T s
Zi h=
X, Xy | s5 | 25
\ /721 z
X;—Y, Xi| Y| Zy
A2,
X3
k=3 Zs
(a) (b) (c)

Fig. 2. The clique problem reduces to P| prec,p, = 1| C,,,. (a) Instance of the clique problem. (b)
Corresponding instance of P | prec,p,=1|C,,,. (¢) Feasible schedule for P| prec,p, = 1| C,,,.
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More precisely, suppose that a clique on k vertices exists. We then schedule
the k jobs corresponding to the clique vertices and the m — k jobs X in the
first time slot. In view of the precedence constraints, we can schedule the / jobs
corresponding to the clique edges and the m — [ — k' jobs Y in the second time
slot; we also schedule the k' remaining vertex jobs there. We finally schedule
the /" remaining edge jobs and the m — ' jobs Z_ in the third time slot. This is
a feasible schedule of length 3.

Conversely, suppose that no clique of size k exists. In any schedule of length
3, exactly k vertex jobs are processed in the first time slot. However, any set of
k vertex jobs releases at most [ — 1 edge jobs for processing in the second time
slot. Since at that point only m — [ other jobs are available for processing, the
schedule cannot be feasible.

11.1. Unit-length jobs on identical machines

We have seen that P| prec,p;=1| C,,, is NP-hard. It is an important open
question whether this remains true for any constant value of m=3. The
problem is well solved, however, if the precedence relation is of the tree type
orif m=2.

Hu [1961] gives a polynomial-time algorithm to solve P|tree.p,=1|C,,,.
Hsu [1966] and Sethi [1976a] give improvements that lead to an O(n) time
procedure. We will describe a procedure for the case of an intree (each job has
at most one successor); an alternative algorithm for the case of an outtree (cach
job has at most one predecessor) is given by Davida & Linton [1976]. The level
of a job is defined as the number of jobs in the unique path to the root of the
precedence tree. At the beginning of each time unit, as many available jobs as
possible are scheduled on the m machines, where highest priority is granted to
the jobs with the largest levels. Thus, Hu’s algorithm is a nonpreemptive list
scheduling algorithm (cf. Section 9.0). It can also be viewed as a critical path
scheduling algorithm: the next job chosen is the one which heads the longest
current chain of unexecuted jobs. Marcotte & Trotter [1984] show that Hu's
algorithm can also be derived from a minmax result of Edmonds [1965] on
covering the elements of a matroid by its bases; in this application, the
elements correspond to jobs, and a transversal matroid is obtained with bases
corresponding to feasible machine histories.

Brucker, Garey & Johnson [1977] show that, if the precedence constraints
arc in the form of an intree, then Hu’s algorithm can be adapted to minimize
L...: on the other hand, if the precedence constraints form an outtree, then
the L . problem turns out to be NP-hard. Monma [1982] improves the former
result by giving a linear-time algorithm.

Garey, Johnson, Tarjan & Yannakakis [1983] consider the case in which the
precedence graph is an opposing forest, that is, the disjoint union of an inforest
and an outforest. They show that if m is arbitrary, then minimizing C,_,, is
NP-hard, but if m is fixed, then the problem can be solved in polynomial time.
Papadimitriou & Yannakakis [1979] consider the case in which the precedence
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graph is an interval order and give an O(n + m) list scheduling rule that
delivers optimal schedules. Bartusch, Mohring & Radermacher [1988a] give an
algorithm that unifies many of the special cases previously known to be
polynomially solvable.

In addition to proving interesting structural theorems about optimal
schedules, Dolev & Warmuth [1984, 1985a,b] give polynomial-time algorithms
for a number of special cases of Pm| prec,p,=1|C,,,. Dolev & Warmuth
[1985b] give an algorithm for opposing forests with substantially improved
running time, that also uses substantially more space. In an arbitrary prece-
dence graph, the level of a job is the length of the longest path that starts at
that job. A level order is a precedence graph in which each pair of incompar-
able jobs with a common predecessor or successor have identical sets of
predecessors and successors. Dolev & Warmuth [1985b] also show that level
orders can be solved in O(n™ ') time. For precedence graphs in which the
longest path has at most & arcs, Dolev & Warmuth [1984] give an Gifp2r2
algorithm. Note that the proof given above shows that the problem is already
NP-hard for & = 2. Dynamic programming can be used to obtain a polynomial-
time algorithm for the case where the width of the precedence graph is
bounded; this is one of the many polynomially solvable special cases surveyed
by Mohring [1989].

Fujii, Kasami & Ninomiya [1969] present the first polynomial-time algorithm
for P2| prec,p,=1|C,,,. An undirected graph is constructed with vertices
corresponding to jobs and edges {j, k} whenever J; and J, can be executed
simultancously. An optimal schedule is then derived from a maximum car-
dinality matching in the graph, and so the algorithm runs in O(n’) time
[Lawler, 1976b].

Coffman & Graham [1972] give an alternative approach that leads to an
O(n”) list scheduling algorithm. First the jobs are labeled in the following way.
Suppose labels 1, . . ., k have been applied and § is the subset of unlabeled jobs
all of whose successors have been labeled. Then a job in S is given the label
k + 1 if the labels of its immediate successors are lexicographically minimal
with respect to all jobs in S. The priority list is given by ordering the jobs
according to decreasing labels. Sethi [1976b] shows that it is possible to execute
this algorithm in time almost linear in n plus the numbers of arcs in the
precedence graph, if the graph is given in the form of a transitive reduction.

Gabow [1982] presents an algorithm which has the same running time, but
which does not require such a representation of the precedence graph. The
running time of the algorithm is dominated by the time to maintain a data
structure that represents scts of elements throughout a sequence of so-called
union-find operations, and Gabow & Tarjan [1985] improve the running time
to linear by exploiting the special structure of the particular union-find
problems generated in this way. Consider the following procedure to compute
a lower bound on the length of an optimal schedule. Delete jobs and
precedence constraints to obtain a precedence graph that can be decomposed
into  sets of jobs, S,,...,S,, such that for each pair of jobs J, €S,, J,E S,
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J, precedes J,; then [|S,|/2] +---+[|S,|/2] is clearly a lower bound.
Gabow’s proof implies the duality result that the maximum lower bound that
can be obtained in this way is equal to C_ .

Garey & Johnson [1976, 1977] present a polynomial algorithm for this
problem where, in addition, each job becomes available at its release date and
has to meet a given deadline. In this approach, one processes the jobs in order
of increasing modified deadlines. This modification requires O(n”) time if all
r;=0, and O(n”) time in the general case.

The reduction given in Section 11.0 also implies that P| prec, p;=1|LC;is
NP-hard. Hu’s algorithm does not yield an optimal £C. schedule in the case of
intrees, but in the case of outtrees, Rosenfeld [-] has observed that critical path
scheduling minimizes both C,,, and XC;. Similarly, Garey [-] has shown that
the Coffman-Graham algorithm minimizes LC; as well.

As far as approximation algorithms for P| prec,p, = 1| C,,,, are concerned,
we have already noted in Section 11.0 that, unless P = NP, the best possible
worst-case bound for a polynomial-time algorithm would be 3. The per-
formance of both Hu’s algorithm and the Coffman-Graham algorithm has
been analyzed.

When critical path (CP) scheduling is used, Chen [1975], Chen & Liu [1975]
and Kunde [1976] show that

3 form=2,
Cui(CRIC L = 5 1 (1)

ax - —— form=3.
m—1

Lam & Sethi [1977] use the Coffman—Graham (CG) algorithm to generate lists
and show that

max

2
Causx (GG O 52—; form=2. ()

If MS denotes the algorithm which schedules as the next job the one having the
greatest number of successors, then Ibarra & Kim [1976] prove that

Cnmx(MS)"{C:\ux = % for m= 2 " (-F-)
Examples show that this bound does not hold for m = 3.

Finally, we mention some results for related models.

Ullman [1975] and Lenstra & Rinnooy Kan [1978] show that both
P2| prec,p,€{1,2}|C,,. and P2| prec,p, € {1,2} | EC, are NP-hard. Naka-
jima, Leung & Hakimi [1981] give a complicated O(n log n) algorithm to find
the optimal solution for P2|tree,p, € {1,2}|C,,.; for practical purposes, a
heuristic due to Kaufman [1974] which has a worst-case absolute error of 1,
may be more attractive. Du & Leung [1989] give an O(n’ log n) algorithm to
solve P2 |tree,p, € {1,3}| C,,, to optimality. On the other hand, Du & Leung
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[1988a] show that P|tree,p, € {1, k}|C,,, (where k is input) is strongly
NP-hard, and that P2|rree,p;E{k’: [=0}]C,,., is NP-hard in the ordinary
sense for any integer k>1. For P2| prec,p,€ {1, k}|C,,,, Goyal [1977]
proposes a generalized version of the Coffman—Graham algorithm (GCG) and
shows that

Ll g

for k=2,

Cous(GCO) Crae={z _ L o g @

2k

[N1()

Rayward-Smith [1987a] considers a model similar to one discussed in Section
10.2, where there is a unit-time communication delay between any pair of
distinct processors. For unit-time jobs, the problem is shown to be NP-
complete. The performance of a greedy (G) algorithm is analyzed, where first a
list schedule is generated, and then a local interchange strategy tries to improve
the schedule. The algorithm produces schedules such that

¢ a2
o L = (+)

max

Approximation algorithms in a similar model are also considered by Papadimit-
riou & Yannakakis [1990].

11.2. Precedence constraints and no preemption

The list scheduling rule performs surprisingly well on identical machines,
even in the presence of precedence constraints. Graham [1966] shows that
precedence constraints do not affect its worst-case performance at all; that is,

-~ % _ _-l_
Coax(LS)/ Cray <2 — . ()

max

Now, consider exccuting the set of jobs twice: the first time using processing
times p,, precedence constraints, m machines and an arbitrary priority list, the
second time using processing times p; < p;, weakened precedence constraints,
m' machines and a (possibly different) priority list. Graham [1966] proves that,
even then,

=1
L L) C Sy =T+ . ()

Note that this result implies the previous one. Even when critical path (CP)
scheduling is used, Graham [-] provides examples for which

1
Cmux(cp)’fc:ﬂn R
m
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Kunde [1981] shows that for tree-type and chain-type precedence constraints,
there are slightly improved upper bounds for CP of 2—2/(m+1) and 3,
respectively. For now, let C;  (pmin) denote the optimal value of C, . if

preemption is allowed. Kaufman [1974] shows that for tree-type precedence
constraints,

1 ;
Cma:l((CP) 5 C;ax(p"]tn) + (1 - ;) max p;’fm.]n p; = (T)
] ]

Du, Leung & Young [1991] prove that P2 |tree| C,,, is strongly NP-hard, even
for chains. Graham [-] shows that for general precedence constraints

max

Coun(LS)/ Cp(primy <2~ -1 (+)

For P| prec,r,| L., Hall & Shmoys [1989] observe that in the delivery time
model, the same proof technique again yields

Lo (LSHELES =3, (1)

max

As remarked above, it is an open question whether Pm | prec,p; =1 | C...
(i.e., with m fixed) is solvable in polynomial time. In fact, it is a challenging
problem even to approximate an optimal solution appreciably better than a
factor of 2 in polynomial time for fixed values of m.

Even less is known about approximation algorithms for uniform machines.

Liu & Liu [1974b] also consider Q| prec| C.... and show that

Chax(LS)/C} . =1+ maxs,/min s, — max s‘./z L (1)

Note that this yields the result of Graham [1966] when all speeds are equal. As
above, similar bounds can be proved relative to the preemptive optimum, or
relative to an altered problem.

Jaffe [1980a] shows that using all of the machines in list scheduling may be
wasteful in the worst case. The arguments of Liu & Liu are generalized to show
that by list scheduling on the fastest / machines (LS,), if s, =--- =5,

il

Cou(LS)ICE = ZI c/ii R sl/zfl 55 (t)
By minimizing this quantity, Jaffe derives an algorithm LS* for which
Coran(LS*)/CE <~ +O(m"').
This bound is tight up to a constant factor. The surprising aspect of this

algorithm is that the decision about the number of machines to be used is made
without the knowledge of the processing requirements.
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Gabow [1988] considers Q2| prec,p,=1|C,,,, and analyzes two approxi-
mation algorithms. The algorithm P2, which ignores the machine speeds and
finds an optimal solution to the resulting problem on two identical machines,
guarantecs

C..(P2)/CL, <2—min{s,,s,}/max{s,,s,} . (1)
The highest level first (HLF) algorithm is shown to be slightly better in special
cases:

if min{s,, 5,} /max{s,, 5,} =
if min{s,, 5,} /max{s, s,} =3 .

10 13—
_—
-t
—

5
C‘“\:IX(HLF) ; C:‘{IX E { ?!
5

Gabow also gives an O((n + a)2') algorithm to find an optimal solution if
|1/s, —1/s,| =1, where 1/s, and 1/s, are relatively prime integers, a is the
number of arcs and / is the number of levels in the precedence graph.

Nothing is known about approximation algorithms for unrelated machines
with precedence constraints.

11.3. Precedence constraints and preemption

Ullmann [1976] shows that P| pmin,prec,p,=1|C,, is NP-hard, but
P| pmtn,tree| C,,,, and P2| pmin,prec|C,,, can be solved by a polynomial-
time algorithm due to Muntz & Coffman [1969, 1970].

The Muntz—Coffman algorithm can be described as follows. Define /,(r) to
be the level of a J; wholly or partly unexecuted at time ¢, where the level now
refers to the length of the path in the precedence graph with maximum total
processing requirement. Suppose that at time ¢, m’' machines arc available and
that n' jobs are currently maximizing [(¢). If m'<n’, we assign m'/n’
machines to each of the n' jobs, which implies that each of these jobs will be
executed at speed m'/n’. If m'=n’, we assign one machine to each job,
consider the jobs at the next highest level, and repeat. The machines are
reassigned whenever a job is completed or threatens to be processed at a
higher speed than another one at a currently higher level. Between cach pair of
successive reassignment points, jobs arc finally rescheduled by means of
McNaughton’s algorithm for P| pmm | C,,, . Gonzalez & Johnson [1980] give
an implementation of the algorithm that runs in O(n’) time.

Gonzalez & Johnson [1980] have developed a totally different algorithm that
solves P | pmtn.tree| C,,,, by starting at the roots rather than the leaves of the
trec and determines priority by considering the total remaining processing time
in subtrees rather than by looking at critical paths. The algorithm runs in
O(n log m) time and introduces at most n —2 preemptions into the resulting
optimal schedule.

This approach can be adapted to the case Q2| pmin,tree | C,.. . Horvath,
Lam & Sethi [1977] give an algorithm to solve Q2| pmin,prec| C,,,, in O(mn*)
time, similar to the result mentioned in Section 10.1.
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Lawler [1982a] shows that some well-solvable problems involving the non-
preemptive scheduling of unit-time jobs turn out to have well-solvable counter-
parts involving the preemptive scheduling of jobs with arbitrary processing
times. The algorithms of Brucker, Garey & Johnson [1977] for P|intree,
p,=1|L,,, and of Garey & Johnson [1976, 1977] for P2| prec, p;=1| L.
and P2 | prec,r;,p;=1| L. (see Section 11.1) all have preemptive counter-
parts. For example, P | pmin,intree| L, can be solved in O(n®) time. For
uniform  machines, Lawler shows that Q2| pmtn,prec|L_ .. and
Q2] pmin, prec,r,| L .. can be solved in O(n*®) and O(n") time, respectively.
These results suggest a strong relationship between the two models.

[t is not hard to see that R2| pmtn,tree| C,,,, is NP-hard in the strong sense,
even for chains [Lenstra, -].

As to approximation algorithms, Lam & Scthi [1977], much in the same
spirit as their work mentioned in Section 11.1, analyze the performance of the
Muntz—Coffman (MC) algorithm for P| pmitn, prec | C.ax- They show

2
Cix(MC)/CE <2-— 7= form=2. (7)

For Q| pmtn,prec|C,, , Horvath, Lam & Sethi [1977] prove that the
Muntz-Coffman algorithm guarantees

Cm'.:x (MC);C:'MX = 3m;2 y
and examples are given to prove that this bound is tight within a constant
factor. Jaffe [1980b] studies the performance of maximal usage schedules
(MUS) for Q| pmtn,prec|C,,,., i.c., schedules without unforced idleness in
which at any time the jobs being processed are assigned to the fastest
machines. It is shown that

CoaxMUS)/CE <vm+ 1,
and examples are given for which the bound Vm — 1 is approached arbitrarily

closely. A slightly weaker bound on these schedules can also be proved using
the techniques of Jaffe [1980a].

PART IV. MULTI-OPERATION MODELS

We now pass on to problems in which each job requires execution on more
than one machine. Recall from Section 3 that in an open shop (denoted by O)
the order in which a job passes through the machines is immaterial, whereas in
a flow shop (F) each job has the same machine ordering (M,,..., M, ) and in

a job shop (J) the jobs may have different machine orderings. We survey these
problem classes in Sections 12, 13 and 14, respectively. Our presentation
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focuses on the C,,, criterion. A few results for other optimality criteria will be
briefly mentioned.

Very few multi-operation scheduling problems can be solved in polynomial
time; the main well-solvable cases are F2| | C,.. [Johnson, 1954], 02| | C,,..
[Gonzalez & Sahni, 1976], and O| pmn|C,,,, [Gonzalez & Sahni, 1976;
Lawler & Labetoulle, 1978]. General flow shop and job shop scheduling
problems have earned a reputation for intractability. We will be mostly
concerned with enumerative optimization methods for their solution and, to a
lesser extent, with approximation algorithms. An analytical approach to the
performance of methods of the latter type is badly needed.

12. Open shops

12.0. Gonzalez & Sahni’s algorithm for 02| | C,,..
The problem 02| | C,,..
Gonzalez & Sahni [1976]. )
For convenience, let a, = Pijs bj =py,a=X;a,b=1X b, An obvious lower
bound on the length of any feasible schedule is given by

admits of an elegant lincar-time algorithm due to

max{a, b, max a,+b}.
1

We will show how a schedule matching this bound can be constructed in O(n)
time.

Let A={J, | a,=b,} and B={J, | a;,<b,}. Choose J, and J, to be any two
distinct jobs, whether in A or B, such that

a,=Zmaxb,, b,Zmaxa, .
sea ! ses !

Let A'=A—-{J, J}, B'=B—{J,J}. We assert that it is possible to form
feasible schedules for B’ U {J,} and for A" U {J,} as indicated in Figure 3(a),
where the jobs in A" and B’ are ordered arbitrarily. In each of these separate
schedules, there is no idle time on either machine, from the start of the first
operation on that machine to the completion of its last operation.

Suppose @ — a, = b- b, (the case @ — a, < b — b, being symmetric). We then
combine the two schedules as shown in Figure 3(b), pushing the jobs in
B"U{J,} on M, to the right. Again, there is no idle time on either machine,
from the start of the first operation to the completion of the last operation.

We finally propose to move the processing of J, on M, to the first position on
that machine. There are two cases to consider. First, if a, <b — b, then the
resulting schedule is as in Figure 3(c); the length of the schedule is max{a, b}.
Secondly, if a, > b — b,, then the schedule in Figure 3(d) results; its length is
max{a, a, + b }. Since, in both cases, we have met our lower bound, the
schedules constructed are optimal.
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Fig. 3. Solving the two-machine open shop scheduling problem.

12.1. The nonpreemptive open shop

There is little hope of finding polynomial-time algorithms for nonpreemptive
open shop scheduling problems beyond 02| | C,,,.. Gonzalez & Sahni [1976]
show that O3] | C,,,, is NP-hard in the ordinary sense. NP-hardness in the
strong sense has been established for 02| | L,,,, and O2|r;|C,,, [Lawler,
Lenstra & Rinnooy Kan, 1981], 02| |EC, [Achugbue & Chin, 1982a],
O2|tree|C,,, and O] | C,,, [Lenstra, -], and for a number of m-machine
multi-operation problems with 0-1 processing times [Gonzalez, 1982].

We mention a few positive results. Adiri & Aizikowitz [1989] investigate
machine dominance, which occurs if min, p,, = max; p, for some M, and M,
with & # i; under this condition, O3] | C,,,, is well solvable. Fiala [1983] uses
results from graph theory to develop an O(m’n’) algorithm for O| | C,,,, if
max; X, p,, = (16m'logm' +5m') max, ; p,, where m' is the roundup of m to
the closest power of 2. As to approximation algorithms, Achugbuc & Chin

[1982a] derive tight bounds on the length of arbitrary schedules and SPT
schedules for O |EC,.

12.2. The preemptive open shop

The result on O2| | C,,,, presented in Section 12.0 also applies to the
preemptive case. The lower bound on the schedule length remains valid if
preemption is allowed. Hence, there is no advantage to preemption for m = 2,
and O2| pmin| C,,,, can be solved in O(n) time.

More generally, O| pmin|C,,, is solvable in polynomial time as well
[Gonzalez & Sahni, 1976]. We had already occasion to refer to this result in
Section 10.1. An outline of the algorithm, adapted from Lawler & Labetoulle
[1978], follows below.
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Let P =(p;) be the matrix of processing times, and let
C= max{max E p;;» max Z p,-j} :
I i d i

Call row i (column j) tight if £, p,=C (X, p; = C), and slack otherwise.
Clearly, we have C%, = C. It is possible to construct a feasible schedule for
which C,_,, = C; hence, this schedule will be optimal.

Suppose we can find a subset S of strictly positive elements of P, with exactly
one element of S in each tight row and in each tight column, and at most one
element of S in cach slack row and in each slack column. We call such a subset
a decrementing set, and use it to construct a partial schedule of length 8, for
some & > 0. The constraints on the choice of & arc as follows:

-lfp, ES and row i or column j is tight, then 6 = p,;.
- 1If p”.ES and row i (column j) is slack, then 6 =p, + C—-X,p, 6=

Pyt C—L, pu)-

—1If row i (column j) contains no element in § (and is therefore necessarily

slack), then 8 <C—-X, p,, 6 <C—-L, p,;)-

For a given decrementing set S, let & be the maximum value subject to these
constraints. Then the partial schedule constructed is such that, for each p;, € S,
M, processes J; for min{ p;;, 8} units of time. We then obtain a matrix P’ from
P by replacing each p,; € S by max{0, p,, — &}, with a lower bound C — 6 on
the schedule length for the remaining problem. We repeat the procedure until
after a finite number of times, P’ = (0). Joining together the partial schedules
obtained for successive decrementing sets then yields an optimal schedule for
P,

By suitably embedding P in a doubly stochastic matrix and appealing to the
Birkhoff—Von Neumann theorem, one can show that a decrementing set can be
found by solving a linear assignment problem; sce Lawler & Labetoulle [1978]
for details. Other networks formulations of the problem are possible. An
analysis of various possible computations reveals that O | pmin| C,,. is solv-
able in O(r + min{m®, n*, r’}) time, where r is the number of nonzero ele-
ments in P [Gonzalez, 1979].

Similar results can be obtained for the minimization of maximum late-
ness. Lawler, Lenstra & Rinnooy Kan [1981] give an O(n) time algorithm
for 02| pmin|L,. and, by symmetry, for O2|pmmn,r|C,,,. For
O| pmin,r,| L,,., Cho & Sahni [1981] show that a trial value of L, can be
tested for feasibility by linear programming; bisection search is then applied to
minimize L,,,, in polynomial time.

The minimization of total completion time appears to be much harder. Liu &
Bulfin [1985] provide NP-hardness proofs for 03| pmm|XC; and
02| pmtn,d;|XC;, where d; is a deadline for the completion of J.
O2| pmin | £.C; remains an open problem.
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13. Flow shops

13.0. Johnson’s algorithm for F2| | C,,.

In one of the first papers on deterministic machine scheduling, Johnson
[1954] gives an O(nlog n) algorithm to solve F2| |C,,, .. The algorithm is
surprisingly simple: first arrange the jobs with Pi; =P, in order of non-
decreasing p,;, and then arrange the remaining jobs in order of nonincreasing
P2;-

)The correctness proof of this algorithm is also straightforward. Notice that
the algorithm produces a permutation schedule, in which each machine pro-
cesses the jobs in the same order. An easy interchange argument shows that
there exists an optimal schedule that is a permutation schedule. We now make
three observations. For a permutation schedule, C,,,, is determined by the
processing time of some k jobs on M,, followed by the processing time of
n+1—k jobs on M,. This implies that, if all p, are decreased by the same
value p, then for each permutation schedule, C, . decreases by (n+ 1)p.
Finally, if p, =0, then J; is scheduled first in some optimal schedule, and
similarly, if p,, =0, then J; is scheduled last in some optimal schedule. Putting
these pieces together, we see that an optimal schedule can be constructed by
repeatedly finding the minimum p;; value among the unscheduled jobs, sub-
tracting this value from all processing times, and scheduling the job with a zero
processing time. This algorithm is clearly equivalent to the one given above.

13.1. Two or three machines

As a general result, Conway, Maxwell & Miller [1967] observe that there
exists an optimal F| | C,,,, schedule with the same processing order on M, and
M, and the same processing order on M,,_, and M,,. Hence, if there are no
more than three machines, we can restrict our attention to permutation
schedules. The reader is invited to construct a four-machine instance in which a
job necessarily ‘passes’ another one between M, and M, in the optimal
schedule.

F3| | C,. is strongly NP-hard [Garey, Johnson & Sethi, 1976]. A fair
amount of effort has been devoted to the identification of special cases and
variants that are solvable in polynomial time. For example, Johnson [1954]
already shows that the case in which max; p,; <max{min; p,;, min; p,} is
solved by applying his algorithm to processing times (Pyj + Paj» Py + P3)).
Conway, Maxwell & Miller [1967] show that the same rule works if M, is a
nonbottleneck machine, i.e., is a machine that can process any number of jobs
at the same time. A two-machine variant involves fime lags I, which are
minimum time intervals between the completion time of J, on M, and its
starting time on M, [Mitten, 1958; Johnson, 1958; Nabeshima, 1963; Szwarc,
1968]; these lags can be viewed as processing times on a nonbottleneck
machine in between M, and M,, so one has to apply Johnson’s algorithm to
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processing times (p,; + [, [, + p,,;) [Rinnooy Kan, 1976]. Monma & Rinnooy
Kan [1983] put many results of this kind in a common framework. Their
discussion includes results for problems with an arbitrary number of machines,
such as some of the work by Smith, Panwalkar & Dudek [1975, 1976] on
ordered flow shops and by Chin & Tsai [1981] on J-maximal and J-minimal
flow shops. In the latter case, there is an M, for which p,, = max, p,, for all j or
p; =min, p, for all j. Achugbue & Chin [1982b] analyze F3| | C,,.. in which
cach machine may be maximal or minimal in this sense and derive an
exhaustive complexity classification. It should be noted that, in all this work,
there is an implicit restriction to permutation schedules. This is justified for
special cases of F3| | C,,,, but not necessarily for its variants. Indeed, the
unrestricted F3| | C,,, problem with a nonbottleneck M, is strongly NP-hard
[Lenstra, -].

NP-hardness in the strong sense has also been established for F2|r;| C,...
F2| | L., [Lenstra, Rinnooy Kan & Brucker, 1977] and F2| |XC, [Garey,
Johnson & Sethi, 1976]. Potts [1985b] investigates the performance of five
approximation algorithms for F2|r,[ C,,,. The best one of these, called RJ’,
involves the repeated application of a dynamic variant of Johnson’s algorithm
to modified versions of the problem, and satisfies

CoeRI)/CE <3 ()
Grabowski [1980] presents a branch and bound algorithm for F2|r;|L,,..
Ignall & Schrage [1965], in one of the carliest papers on branch and bound
methods for scheduling problems, propose two lower bounds for F2| |XC,,
Kohler & Steiglitz [1975] report on the implementation of these bounds, and
Van de Velde [1990] shows that both bounds can be viewed as special cases of a
lower bound based on Lagrangean relaxation.

Gonzalez & Sahni [1978a] and Cho & Sahni [1981] consider the case of
preemptive flow shop scheduling. Since preemptions on M, and M, can be
removed without increasing C, . , Johnson's algorithm solves F2| pmin | C,
as well. F3| pmmn | Cyo., F2| pmin,r;| C,,, and F2| pmm| L, are strongly
NP-hard. So is F3| pmin|EC; [Lenstra, -]; F2| pmm | EC, remains open.

As to precedence constraints, F2|rree|C,, is strongly NP-hard [Lenstra,
Rinnooy Kan & Brucker, 1977], but F2|tree,p, =1|C,,, and F2|tree,
p, = 1|EC; are solvable in polynomial time [Lageweg, -]. We note that an
interpretation of precedence constraints that differs from our definition is
possible. If J,—'J, only means that O, has to precede O, for i=1, 2, then
F2|tree'| C,,, and even the problem with series-parallel precedence con-
straints can be solved in O(n log n) time [Sidney, 1979; Monma, 1979]. The
arguments used to establish this result are very similar to those referred to in
Section 5.1 and apply to a larger class of scheduling problems. The general case
F2| prec'| C,,,, is strongly NP-hard [Monma, 1980]. Hariri & Potts [1984]
develop a branch and bound algorithm for this problem, using a lower bound
based on Lagrangean relaxation.
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13.2. Flow shop scheduling

We know from Section 13.1 that, for the general F| |C,,  problem,
permutation schedules are not necessarily optimal. Nevertheless, in the litera-
ture on enumerative optimization methods for flow shop scheduling it has
become a tradition to assume identical processing orders on all machines and
to look for the best permutation schedule.

The usual enumeration scheme generates schedules by building them from
front to back. That is, at a node at the /th level of the search tree, a partial
schedule (J,),...,J,y)) has been formed and the jobs with index set
S={1,...,n}—={o(1),...,0(l)} are candidates for the (/+ 1)th position.
One then needs to find a lower bound on the length of all possible completions
of the partial schedule. Almost all lower bounds developed so far are captured
by the following bounding scheme due to Lageweg, Lenstra & Rinnooy Kan
[1978].

Let us relax the constraint that each machine can process at most one job at
a time, for all machines but at most two, say, M, and M, (1 =u=v=m). We
then obtain the following problem. Each job J; (j € §) has to be processed on
five machines N_,, M,, N,,, M,, N, in that order. N_, N, and N, are
nonbottleneck machines, of infinite capacity; if C(o, i) denotes the completion
time of J,,) on M,, then the processing times of J, (jES)on N, N,, and N,
are defined by

u—1

4.y = Max (C(ﬂn i) ;: p,.,-) .

qu*j = Z ph;’ ?

h=v+1

respectively. M, and M, are ordinary machines of unit capacity, with process-
ing times p, and p,, respectively. We wish to find a permutation schedule that
minimizes C,,.. We can interpret N, as yielding release dates q,;on M, and
N,, as sctting due dates —gq,,; on M,, with respect to which L _ is to be
minimized. Note that we can remove any of the nonbottleneck machines from
the problem by underestimating its contribution to the lower bound to be its
minimum processing time; valid lower bounds are obtained by adding these
contributions to the optimal solution value of the remaining problem.

If we choose u = v and remove both N, and N, from the problem, we

obtain the machine-based bound proposed by Ignall & Schrage [1965]:

max (min i .+ min ) .
l=u=m \ jES q*u’ E‘F p".’ ies q"*!
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Removal of either N_, or N, resultsina 1| | L, or 1|r,|C,., problem on
M,. Both problems are solvable in O(n log n) time (sce Section 4.2) and
provide slightly stronger bounds.

If u+# v, removal of N_,. N,, and N, yields an F2| | C,,, problem, which
can be solved by Johnson's algorithm. As pointed out in Section 13.1, we can
take N, fully into account and still solve the problem in O(n log n) time. The
resulting bound dominates the job-based bound proposed by McMahon [1971]
and is currently the most successful bound that can be computed in polynomial
time.

All other variations on this theme lead to NP-hard problems. However, this
does not necessarily preclude their effectivity for lower bound computations, as
will become clear in Section 14.2.

In addition to lower bounds, one may use elimination criteria in order to
prunc the search tree. In this respect, particular attention has been paid to
conditions under which all completions of (J,,,..., /4 /;) can be elimi-
nated because a schedule at least as good exists among the completions of
(Jociys - - - doays o ;). 1f all information obtainable from the processing times
of the other jobs is disregarded, the strongest condition under which this is
allowed is the following: J, can be excluded for the (/ + 1)th position if

max{ C(okj, i — 1) = Caj, i — 1), C(akj, i) — C(aj, i)} <p,

fori=2,....m

[McMahon, 1969; Szwarc, 1971, 1973]. Inclusion of these and similar domi-
nance rules can be very helpful from a computational point of view, depending
on the lower bound used [Lageweg, Lenstra & Rinnooy Kan, 1978]. It may be
worthwhile to consider extensions that, for instance, take the processing times
of the unscheduled jobs into account [Gupta & Reddi, 1978; Szwarc, 1978].

A number of alternative and more efficient enumeration schemes has been
developed. Potts [1980a] proposes to construct a schedule from the front and
from the back at the same time. Grabowski’s [1982] block approach obtains a
complete feasible schedule at cach node and bases the branching decision on
an analysis of the transformations required to shorten the critical path that
determines the schedule length. Grabowski, Skubalska & Smutnicki [1983]
extend these ideas to the F|r,| L, problem.

Not much has been done in the way of worst-case analysis of approximation
algorithms for the flow shop scheduling problem. It is not hard to see that for
any active schedule (AS)

Cm;lx(AS)fC:lux = mﬂx p”a"mln pij 4 (T)
if LBy
Gonzalez & Sahni [1978a] show that

C‘m:m(‘qs)Jlr C’:lux =m. (P)
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This bound is tight even for LPT schedules, in which the jobs are ordered
according to nonincreasing sums of processing times. They also give an
O(mn log n) heuristic H based on [m/2] applications of Johnson’s algorithm,
with

Cruae(H)Clo < [mi2] .
Rock and Schmidt [1983] use an aggregation heuristic that first constructs a
two-machine instance by combining the first [m/2] machines to get M, and the
rest to get M,, and then applies Johnson’s algorithm; the resulting permutation
schedule also has a performance ratio of [m/2]. Belov & Stolin [1974] and
Sevastyanov [1975] use geometric tools to obtain permutation schedules that
are quite close to the overall optimum. The best result along these lines is due
to Sevastyanov [1980], who gives an O(m’n”) algorithm S to find a schedule
which has an absolute error bound that is independent of n:

Cmax(‘s) - Cr:nx = m(m - l) “}‘}x Pij -

For the formulation and empirical evaluation of various rules for the
construction and iterative improvement of flow shop schedules, we refer to
Palmer [1965], Campbell, Dudek & Smith [1970], Dannenbring [1977], Nawaz,
Enscore & Ham [1983], Turner & Booth [1987], and Osman & Potts [1989].
The current champions are the fast insertion method of Nawaz, Enscore &
Ham and the less efficient but more effective simulated annealing algorithm of
Osman & Potts. Simulated annealing is a randomized variant of iterative
improvement, which accepts deteriorations with a small and decreasing prob-
ability in an attempt to avoid bad local optima and to get settled in a global
optimum. In the experiments of Osman & Potts, the neighborhood of a

permutation schedule contains all schedules that can be obtained by moving a
single job to another position.

13.3. No wait in process

In a variation on the flow shop problem, each job, once started, has to be
processed without interruption until it is completed. This no wait constraint
may arise out of certain job characteristics (such as in the ‘hot ingot’ problem,
where metal has to be processed at a continuously high temperature) or out of
the unavailability of intermediate storage in between machines.

The resulting F'|no wait| C,,. problem can be formulated as a traveling
salesman problem with cities 0, 1,..., n and intercity distances

i i—1
¢, = max (521 P — ;Z'n p,,k) forj,k=0,1,...,n,

I=i=m

where p,, =0 for i=1,..., m [Pichler, 1960; Reddi & Ramamoorthy, 1972;
Wismer, 1972].
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For the case F2|no wait|C,,,, the traveling salesman problem assumes a
special structure, and results due to Gilmore & Gomory [1964] can be applied
to yield an O(n*) algorithm; see Reddi & Ramamoorthy [1972] and also
Gilmore, Lawler & Shmoys [1985]. In contrast, F4| no wait| C,,,, is strongly
NP-hard [Papadimitriou & Kanellakis, 1980], and so is F3|no wait| C,,,
[Réck, 1984a]. The same is true for F2|no wait| L, and F2|no wait| EC,
[Réck, 1984b], and for O2 | no wait| C,,,, and J2| no wait| C,,,, [Sahni & Cho,
1979a]. Goyal & Sriskandarajah [1988] review complexity results and approxi-
mation algorithms for this problem class.

The no wait constraint may lengthen the optimal flow shops schedule
considerably. Lenstra [-] shows that

Ck (no wait)/Cy. <m form=2. (t)

14. Job shops
14.0. The disjunctive graph model for J| | C,,,

The description of J| | C,,, in Section 3 does not reveal much of the
structure of this problem type. An illuminating problem representation is
provided by the disjunctive graph model due to Roy & Sussmann [1964].

Given an instance of J| | C,,., the corresponding disjunctive graph is
defined as follows. For every operation O, there is a vertex, with a weight p,;.
For every two consecutive operations of the same job, there is a (directed) arc.
For every two operations that require the same machine, there is an (un-
directed) edge. Thus, the arcs represent the job precedence constraints, and
the edges represent the machine capacity constraints.

The basic scheduling decision is to impose an ordering on a pair of
operations on the same machine. In the disjunctive graph, this corresponds to
orienting the edge in question, in one way or the other. A schedule is obtained
by orienting all of the edges. The schedule is feasible if the resulting directed
graph is acyclic, and its length is obviously equal to the weight of maximum
weight path in this graph.

The job shop scheduling problem has now been formulated as the problem
of finding an orientation of the edges of a disjunctive graph that minimizes the
maximum path weight. We refer to Figure 4 for an example.

14.1. Two or three machines

A simple extension of Johnson’s algorithm for F2| | C,,, allows solution of
J2|m,<2|C,,, in O(nlog n) time [Jackson, 1956]. Let f; be the set of jobs
with operations on M, only (i =1, 2), and let 7, be the set of jobs that go from
M, to M, ({h, i} ={1,2}). Order the latter two sets by means of Johnson’s
algorithm and the former two sets arbitrarily. One then obtains an optimal
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Fig. 4. A job shop scheduling problem. (a) Instance. (b) Instance, represented as a disjunctive
graph. (c) Feasible schedule, represented as an acyclic directed graph.

schedule by executing the jobs on M, in the order (F12. #,. #,,) and on M, in
the order (#,,, 4,, 4,,).

Hefetz & Adiri [1982] solve another special case, J2| Pii = 1| Cpux in time
linear in the total number of operations, through a rule that gives priority to
the longest remaining job. Brucker [1981, 1982] extends this result to J2|
pr" = l | LITHIK'

JThiss. however, is probably as far as we can get. J2 |m,<3|C,,. and
J3|m;<2|C,,, are NP-hard [Lenstra, Rinnooy Kan & Brucker, 1977: Gon-
zalez & Sahni, 1978a], J2| p, € {1,2}| C,,,, and J3| p; = 1| C,. are strongly
NP-hard [Lenstra & Rinnooy Kan, 1979], and these results still hold if
preemption is allowed. Also, J2| pmtn | X.C; is strongly NP-hard [Lenstra, -|;
recall that the corresponding open shop and flow shop problems are open.

14.2. General job shop scheduling

Optimization algorithms for the J| | C, . problem proceed by branch and
bound. We will describe methods of that type in terms of the disjunctive graph
(0, A, E), where 0 is the set of operations, A the arc set, and E the edge set.

A node in the search tree is usually characterized by an orientation of each



Ch. 9. Sequencing and Scheduling 497

edge in a certain subset E' C E. The question then is how to compute a lower
bound on the value of all completions of this partial solution. Németi [1964],
Charlton & Death [1970] and Schrage [1970] are among the researchers who
obtain a lower bound by simply disregarding E — E' and computing the
maximum path weight in the directed graph (0, AU E'). A more sophisticated
bound, due to Bratley, Florian & Robillard [1973], is based on the relaxation
of the capacity constraints of all machines except one. They propose to select a
machine M' and to solve the job shop scheduling problem on the disjunctive
graph (0, AUE', {{0,,0,.}|m;=n,; =M'}). This is a single-machine
problem, where the arcs in A U E’ define release times and delivery times for
the operations that are to be scheduled on machine M'. This observation has
spawned the subsequent work on the 1|r;.‘ L., problem which was reviewed
in Section 4.2 and which has led to fast methods for its solution. As pointed out
by Lageweg, Lenstra & Rinnooy Kan [1977], the lower bound problem is, in
fact, 1| prec,r;| L., since AU E' may define precedence constraints among
the operations on M'. Again, most other lower bounds appear as special cases
of this one, by relaxing the capacity constraint of M’ (which gives Németi’s
longest path bound), by underestimating the contribution of the release and
delivery times, by allowing preemption, or by ignoring the precedence con-
straints. These relaxations, with the exception of the last one, turn an NP-hard
single-machine problem into a problem that is solvable in polynomial time.

Fisher, Lageweg, Lenstra & Rinnooy Kan [1983] investigate surrogate
duality relaxations, in which either the capacity constraints of the machines or
the precedence constraints among the operations of each job are weighted and
aggregated into a single constraint. In theory, the resulting bounds dominate
the above single-machine bound. Balas [1985] describes a first attempt to
obtain bounds by polyhedral techniques.

The usual enumeration scheme is due to Giffler & Thompson [1960]. It
generates all active schedules by constructing them from front to back. At each
stage, the subset O' of operations O, all of whose predecessors have been
scheduled is determined and their earliest possible completion times r,; + p,;
are calculated. It suffices to consider only a machine on which the minimum
value of r; + p,; is achieved and to branch by successively scheduling next on
that machine all operations in 0’ for which the release time is strictly smaller
than this minimum. In this scheme, several edges are oriented at each stage.

Lageweg, Lenstra & Rinnooy Kan [1977] and Carlier & Pinson [1988]
describe alternative enumeration schemes whereby at each stage, a single edge
is selected and oriented in either of two ways. Barker & McMahon [1985]
branch by rearranging the operations in a critical block that occurs on the
maximum weight path.

We briefly outline three of the many implemented branch and bound
algorithms for job shop scheduling. McMahon & Florian [1975] combine the
Giffler—Thompson enumeration scheme with the 1|r;| L,,,, bound, which is
computed for all machines by their own algorithm. Lageweg [1984] applies the
same branching rule, computes the 1| prec,r;| L, bound only for a few
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promising machines using Carlier’s [1982] algorithm, and obtains upper bounds
with a heuristic due to Lageweg, Lenstra & Rinnooy Kan [1977]. Carlier &
Pinson [1988] implement their novel enumeration schemes, the
L| pmn, prec,r;| L, bound (which can be computed in polynomial time), and
a collection of powerful elimination rules for which we refer to their paper.

Most approximation algorithms for job shop scheduling use a dispatch rule,
which schedules the operations according to some priority function. Gonzalez
& Sahni [1978a] observe that the performance guarantees for the flow shop
algorithms AS and LPT (see Section 13.2) also apply to the case of a job shop.
A considerable effort has been invested in the empirical testing of rules of this
type [Gere, 1966; Conway, Maxwell & Miller, 1967; Day & Hottenstein, 1970;
Panwalkar & Iskander, 1977; Haupt, 1989].

Adams, Balas & Zawack [1988] develop a sliding bottleneck heuristic, which
employs an ingenious combination of schedule construction and iterative
improvement, guided by solutions to single-machine problems of the type
described above. They also embed this method in a second heuristic that
proceeds by partial enumeration of the solution space.

Matsuo, Suh & Sullivan [1988] and Van Laarhoven, Aarts & Lenstra [1992]
apply the principle of simulated annealing (see Section 13.2) to the job shop
scheduling problem. In the latter paper, the neighborhood of a schedule
contains all schedules that can be obtained by interchanging two operations O
and O, on the same machine such that the arc (O, O,.;.) is on a maximum
weight path. In the former paper, the neighborhood structure is more complex.

14.3. 10 x 10 = 930

The computational merits of all these algorithms are accurately reflected by
their performance on the notorious 10-job 10-machine problem instance due to
Fisher & Thompson [1963].

The single-machine bound, maximized over all machines, has a value of 808.
McMahon & Florian [1975] found a schedule of length 972. Fisher, Lageweg,
Lenstra & Rinnooy Kan [1983] applied surrogate duality relaxation of the
capacity constraints and of the precedence constraints to find lower bounds of
813 and 808, respectively; the computational effort involved did not encourage
them to carry on the search beyond the root of the tree. Lageweg [1984] found
a schedule of length 930, without proving optimality; he also computed a
number of multi-machine lower bounds, ranging from a three-machine bound
of 874 to a six-machine bound of 907. Carlier & Pinson [1988] were the first to
prove optimality of the value 930, after generating 22 021 nodes and five hours
of computing. The main drawback of all these enumerative methods, besides
the limited problem sizes that can be handled, is their sensitivity towards
particular problem instances and also towards the initial value of the upper
bound.

The computational experience with polyhedral techniques that has been
reported until now is slightly disappointing in view of what has been achieved
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for other hard problems. However, the investigations in this direction are still
at an initial stage.

Dispatch rules show an erratic behavior. The rule proposed by Lageweg,
Lenstra & Rinnooy Kan [1977] constructs a schedule of length 1082, and most
other priority functions do worse.

Adams, Balas & Zawack [1988] report that their sliding bottleneck heuristic
obtains a schedule of length 1015 in ten CPU seconds, solving 249 single-
machine problems on the way. Their partial enumeration procedure succeeds
in finding the optimum, after 851 seconds and 270 runs of the first heuristic.

Five runs of the simulated annealing algorithm of Van Laarhoven, Aarts &
Lenstra [1992], with a standard setting of the cooling parameters, take 6000
seconds on average and produce an average schedule length of 942.4, with a
minimum of 937. If 6000 seconds are spent on deterministic neighborhood
search, which accepts only true improvements, more than 9000 local optima
are found, the best one of which has a value of 1006. Five runs with a much
slower cooling schedule take about 16 hours each and produce solution values
of 930 (twice), 934, 935 and 938. In comparison to other approximative
approaches, simulated annealing requires unusual computation times, but it
yields consistently good solutions with a modest amount of human implementa-
tion effort and relatively little insight into the combinatorial structure of the
problem type under consideration.

PART V. MORE SEQUENCING AND SCHEDULING

In the preceding sections, we have been exclusively concerned with the class
of deterministic machine scheduling problems. Several extensions of this class
are worthy of further investigation. A natural extension involves the presence
of additional resources, where each resource has a limited size and each job
requires the use of a part of each resource during its execution. The resulting
resource-constrained project scheduling problems are considered in Section 15.
We also may relax the assumption that all problem data are known in advance
and investigate stochastic machine scheduling problems. This class is the subject
of Section 16. We will not enter the area of stochastic project scheduling, which
is surveyed by Mohring & Radermacher [1985b].

15. Resource-constrained project scheduling

15.0. A matching formulation for P2| p;=1|C,,, with resource constraints
Consider a single-operation model, and suppose there are / additional

resources R, (h=1,...,1). For each resource R,, there is a size s, , which is

the amount of R, available at any time. For each resource R, and each job J,,
there is a requirement r,;, which is the amount of R,, required by J; at all times
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during its execution. A schedule is feasible with respect to the resources if at
any time f the index set /, of jobs being executed at time ¢ satisfies Liel, Thi < Sy
forh=1,...,1L

In the case P2| p;=1|C,,,, Garey & Johnson [1975] propose to represent
the resource constraints by a graph with vertex set {1,...,n} and an edge
{J, k} whenever r,; +r,, <s, for h=1,..., 1. That is, vertices j and k are
adjacent if and only if J, and J, can be processed simultaneously. A matching M
in the graph obviously corresponds to a schedule of length n — | M|, and an
optimal schedule is obtained by computing a maximum cardinality matching.

15.1. Machines and resources

Sequencing and scheduling is concerned with the optimal allocation of scarce
resources to activities over time. So far, the resources and the activities have
been of a relatively simple nature. It was assumed that an activity, or job,
requires at most one resource, or machine, at a time. Also, a machine is able
to process at most one job at a time. This unit-capacity is constant, and not
affected by its use.

It is obvious that scheduling situations of a more general nature exist.
Certain types of resources are depleted by use (e.g., money or energy) or are
available in amounts that vary over time, in a predictable manner (e.g.,
seasonal labor) or in an unpredictable manner (e.g., vulnerable equipment). At
one point in time, a resource may be shared among several jobs, and a job may
need several resources. The resource amounts required by a job may vary
during its processing and, indeed, the processing time itself could depend on
the amount or type of resource allocated, as in the case of uniform or unrelated
machines.

Through these generalizations, the domain of deterministic scheduling
theory is considerably extended. Usually referred to as resource-constrained
project scheduling, the area covers a tremendous variety of problem types.

15.2. Classification and complexity

To approach this area in the best tradition of deterministic scheduling theory
would require the development of a detailed problem classification, followed
by a complexity analysis involving polynomial-time algorithms and NP-hard-
ness proofs.

A modest attempt along these lines was made by Blazewicz, Lenstra &
Rinnooy Kan [1983]. They consider resource constraints of the type defined in
the first paragraph of Section 15.0, and propose to include these in the second
field of the problem classification through a parameter reshop, where A, o, and
p specify the number of resources, their sizes, and the amounts required. More
precisely,

—if A is a positive integer, then / is a constant, equal to A; if A = -, then / is
specified as part of the input;
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—if o a positive integer, then all s, are constants, equal to o; if o =, then
the s, are part of the input;

—if p is a positive integer, then all r,; have a constant upper bound, equal to
p: if p=-, then no such bounds are specified.

Blazewicz, Lenstra & Rinnooy Kan investigate the computational complexity
of Q|res--- prec,p;=1|C,, and its special cases. The resulting exhaustive
complexity classification is presented in Figure 5. We have alrcady seen in
Section 15.0 that P2|res---.p,=1|C,,, is solvable by matching techniques.
Also note that P3[resl--.p = 1| C,.. is an immediate generalization of the

X

C) solvable in polynomial time Omnximully solvable in polynomial time

Fig. 5. Complexity of scheduling unit-time jobs on parallel machines subject to resource con-
straints.
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3-partition problem and thereby strongly NP-hard; see Section 2 and Garey &
Johnson [1975].

These results are not encouraging, in that virtually all except the simplest
resource-constrained project scheduling problems turn out to be NP-hard. In
the next section, we abolish the search for special structure and review two
optimization models of a fairly general nature.

15.3. Two optimization models

The early literature on optimization and approximation in resource-
constrained project scheduling is reviewed by Davis [1966, 1973]. Optimization
models are traditionally cast in terms of integer programming. We start by
presenting one such formulation, due to Talbot & Patterson [1978] and
Christofides, Alvarez-Valdes & Tamarit [1987].

For simplicity, we consider the P|res--: prec|C,, problem, i.e.,
P| prec|C,,. with resource constraints as described in the first paragraph of
Section 15.0. We also suppose that m = n and that one job, J,, succeeds all
others. The problem is then to find nonnegative job completion times C,
which define index sets /, of jobs executed at time ¢, such that C, is minimized
subject to precedence constraints and resource constraints:

C; + p, = C; whenever J,— J, |

> ry<s, forall R, and all r.

JEL,

To convert the latter set of constraints into linear form, we introduce 0-1
variables y, , with y;, = 1if and L:mly if C; = 1t. Obviously, C; =X, ty,, and the
resource constraints can be rewritten as

e
n fPJ'I

21 T 2 Vi <5, for all & and ¢ .
i= u=t

Branch and bound algorithms using bounds based on the linear relaxation,
cutting planes, and Lagrangean relaxation of the resource constraints are
reasonably effective for problems with up to three resources and 25 jobs.

An entirely different approach was taken by Bartusch, Méhring & Rader-
macher [1988b]. Recall the formulation of the J| | C,,,, problem in terms of a
disjunctive graph, where each edge corresponds to a pair of operations that
cannot be processed simultaneously since they require the same machine.
Following earlier work by Balas [1970], Bartusch, Mdhring & Radermacher
generalize this idea, by defining resource constraints in the form of a family
N ={N,,..., N,} of forbidden subsets. Each N, is a subset of jobs that cannot
be executed simultancously because of its collective resource requirements; this
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presupposes constant resource availability over time. In addition, they general-
ize the traditional precedence constraints of the form

C,+p,=C, wheneverJ,—J
to temporal constraints of the form
C+d,<C, forallJ, /.,

where d,, is a (possibly negative) distance from J; to J,.. The resulting model is
quite general. It allows for the specification of job release dates and deadlines,
of minimal and maximal time lags between jobs, and of time-dependent
resource consumption per job.

The investigation of this model leads to structural insights as well as
computational methods. This is also true for the related model involving
traditional precedence constraints [Radermacher, 1985/6] and for the dual
model in which resource consumption is to be minimized subject to a common
job deadline [Mohring, 1984]. The approach leads to new classes of poly-
nomially solvable problems that are characterized by the structure of the family
of forbidden subsets [Mdhring, 1983]. For the general model, it can be shown
that for any optimality criterion that is nondecreasing in the job completion
times, attention can be restricted to left-justified schedules. Enumerative
methods can be designed that, as in the case of J| | C,,,, construct feasible
schedules by adding at least one precedence constraint among the jobs in each
forbidden subset.

In the case of job shop scheduling, the number of edges is O(n’). Similarly,
the present model is only computationally feasible when the number of
forbidden subsets is not too large. It is sufficient if A contains only those
forbidden subsets that are minimal under set inclusion. A branch and bound
method that branches by successively considering all possibilities to eliminate a
particular forbidden subset and obtains lower bounds by simply computing a
longest path with respect to the augmented temporal constraints, compares
favorably with the integer programming algorithm of Talbot & Patterson
[1978].

16. Stochastic machine scheduling

16.0. List scheduling for P| p;,~exp(A,)|EC,,,, EEC,

Suppose that m identical parallel machines have to process n independent
jobs. In contrast to what we have assumed so far, the processing times are not
given beforehand but become known only after the jobs have been allocated to
the machines. More specifically, each processing time p, follows an exponential
distribution with parameter A, for j=1,...,n. We want to minimize the
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expected maximum completion time EC,,, or the expected total completion
time EXC;. (As noted before, random variables are printed in boldface italic.)

Results of Bruno & Downey [1977] for m =2 and of Bruno, Downey &
Frederickson [1981] for arbitrary m state that these problems are solved by
simple list scheduling policies. The longest expected processing time (LEPT)
rule, which schedules the jobs in order of nonincreasing values 1/A;, minimizes
EC,..; the shortest expected processing time (SEPT) rule, which schedules the
jobs in the reverse order, minimizes EZC,.

We will sketch a proof of the optimality of the LEPT rule for minimizing
EC,,,.. This proof, which is due to Weiss & Pinedo [1980], relies on the
formulation of the preemptive version of the problem in terms of a semi-
Markov decision process. Note, however, that the LEPT rule will never
preempt a job, because of the memoryless property of the exponential
distribution.

Let N=1{1,..., n} be the index set of all jobs, and let F_(S) denote the
minimum expected maximum completion time for the jobs indexed by § C N
under a scheduling policy 7. Consider a policy 7 that at time 0 selects a set
S, € N to be processed, preempts the schedule at time >0, and applies the
LEPT rule from time ¢ onwards. By time f, a job J; is completed with
probability A ¢+ o(r), and two or more jobs are completed with probability
o(r), for r—0. It now follows from Markov decision theory that

E (N)=it+ 2:: AF (N = {j}) + (1 - 22 )‘,")FLEPT(N)
rd jes.
+o(t), —0.

Without loss of generality, we assume that | S_ | = m < n. If # is not the LEPT
policy, then there exist jobs J,, J, with A, < A, such that k& S_, € S_. Now
define another policy 7' that at time 0 selects aset S_. =S_U {k} — {I} and
applies LEPT from time ¢ onwards. We have that

Fo(N) = F.(N) = t[ A (FLgpr(N) = Fgpr(N — {k}))

- "‘J(Fl.l—:r-'r(N) - FLEP'I'(N - ”}))]
+o(t), 1—0.

Lengthy but rather straightforward calculations, which are not given here,
show that the expression within square brackets is positive. The argument is by
induction on »n and uses the following simple recursion:

F,_E,..,.(N)=(1+ 2 »\,-FLEP-.-(N—{J‘}))/ DI

JESLEPT JESLEPT

where S, gy contains the smallest m A’s. It follows that, if ¢ is small enough,
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then F_(N)> F,.(N). After at most m interchanges, the policy applied at time
0 is the LEPT rule, and we have that F_(N)> F gpr(N).

It is interesting to note that, while P| | C,,, is NP-hard, a stochastic variant
of the problem is solvable in polynomial time. As observed above, LEPT
should be viewed as an algorithm for the preemptive problem, and preemptive
scheduling in a deterministic setting is not hard either. Indeed, for the case of
uniform machines, Weiss & Pinedo [1980] prove that a preemptive LEPT
(SEPT) policy, which allows reallocation of jobs to machines at job completion
times, solves Q | pmtn, p, ~exp(A,;) | EC,x (EEC)).

16.1. Deterministic and stochastic data

The scheduling models discussed in the earlier sections are based on the
assumption that all problem data are known in advance. This assumption is not
always justified. Processing times may be subject to fluctuations, and job
arrivals and machine breakdowns are often random events.

A substantial literature exists in which scheduling problems are considered
from a probabilistic perspective. A deterministic scheduling model may give
rise to various stochastic counterparts, as there is a choice in the parameters
that are randomized, in their distributions, and in the classes of policies that
can be applied. A characteristic feature of these models is that the stochastic
parameters are regarded as independent random variables with a given dis-
tribution and that their realization occurs only after the scheduling decision has
been made.

Surprisingly, there are many cases where a simple rule which is merely a
heuristic for the deterministic model has a stochastic reformulation which
solves the stochastic model to optimality; we have seen an example in the
previous section. In the deterministic model, one has perfect information, and
capitalizing on it in minimizing the realization of a performance measure may
require exponential time. In the stochastic model, one has imperfect informa-
tion, and the problem of minimizing the expectation of a performance measure
may be computationally tractable. In such cases, the scheduling decision is
based on distributional information such as first and second moments. In
general, however, optimal policies may be dynamic and require information on
the history up to the current point in time.

Results in this area are technically complicated; they rely on semi-Markovian
decision theory and stochastic dynamic optimization. Within the scope of this
section, it is not possible to do full justice to the literature. We present some
typical results for the main types of machine environments below, concen-
trating on scheduling models with random processing times. We refer to Pinedo
(1983] for scheduling with random release and due dates, to Pinedo &
Rammouz [1988] and Birge, Frenk, Mittenthal & Rinnooy Kan [1990] for
single-machine scheduling with random breakdowns, and to the surveys by
Pinedo & Schrage [1982], Weiss [1982], Forst [1984], Pinedo [1984], Mohring,
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Radermacher & Weiss [1984, 1985], Mohring & Radermacher [1985b] and
Frenk [1988] for further information.

16.2. The single machine

In stochastic single-machine scheduling, Gittins’ work on dynamic allocation
indices initiated an important line of rescarch. A prototypical result is the
following. One machine has to process n jobs. The job processing times p; are
independent, nonnegative and identically distributed random variables, whose
distribution function F has an increasing completion rate (dF(¢r)/dr) /(1 — F(1)).
If job J, completes at time C,, then a reward aje”  is incurred. The objective
is to maximize the fotal expected reward. It is achieved by scheduling the jobs
in order of nonincreasing ratios a;Ee /(1 - Ee 7). This ratio can be
interpreted as the expected reward for J; per unit of expected discounted
processing time. The increasing completion rate of F ensures that there is no
advantage to preemption.

This result follows from the mathematical theory of bandit processes. Sub-
sequent work by Gittins & Glazebrook has led to many extensions. Forst
[1984] present a survey of this part of the literature.

Another class of results concerns the situation in which the p, are in-
dependent, nonnegative random variables, and the objective is to minimize the
expected maximum job completion cost subject to precedence constraints.
Hodgson [1977] generalizes the algorithm of Lawler [1973] for 1 | prec| f,,..
(see Section 4.0) to solve this problem. The result subsumes earlier work
involving deterministic due dates, such as the minimization of the maximum
probability of lateness [Banerjee, 1965], the maximization of the probability
that every job is on time [Crabill & Maxwell, 1969], and the minimization of
the maximum expected weighted tardiness [Blau, 1973].

16.3. Parallel machines

Research in stochastic parallel machine scheduling has focused on extending
the results quoted in Section 16.0 beyond the realm of exponential dis-
tributions. Weber has shown that, as a necessary condition, the processing time
distributions have to be consistent in terms of completion rates (i.e., either all
decreasing or all increasing) or in terms of likelihood rates (i.e., the log dF,/dr
either all convex or all concave). Weiss [1982] reviews this work. Weber,
Varaiya & Walrand [1986] show that SEPT minimizes the expected total
completion time on identical machines if the processing times are stochastically
comparable.

The extension to uniform machines has been explored by Agrawala, Coff-
man, Garey & Tripathi [1984], Kumar & Walrand [1985], Coffman, Flatto,
Garey & Weber [1987] and Righter [1988].

For the case of intree precedence constraints and exponential processing
times, Pinedo & Weiss [1985] prove that HLF minimizes the expected maxi-
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mum completion time on two identical machines if all the jobs at the same
level have the same parameter. Frostig [1988] extends this work.

Pinedo & Weiss [1987] investigate the case of identical expected processing
times. Their result confirms the intuition that, at least for some simple
distributions, the jobs with the largest variance should be scheduled first.

16.4. Multi-operation models

Pinedo’s [1984] survey is a good source of information on stochastic shop
scheduling. Most work has concentrated on flow shops; Pinedo & Weiss [1984]
deal with some stochastic variants of the Gonzalez-Sahni [1976] algorithm for
02| | C,,.. (see Section 12.0).

Brumelle & Sidney [1982] show that Johnson’s [1954] algorithm for
F2| | C,,,, also applies to the exponential case. If p,;~exp(A;) and p,; ~
exp(p,), then sequencing in order of nonincreasing A, — w;, minimizes the
expected maximum completion time.

For F| | C,.,, it is usually assumed that the p, are independent random
variables whose distributions do not depend on i. Weber [1979] shows that, in
the exponential case, any sequence minimizes EC, .. Pinedo [1982] observes
that, under fairly general conditions, any sequence for which Ep,; is first
nondecreasing and then nonincreasing is optimal; as a rule of thumb, jobs with
smaller expected processing time and larger variance should come at the
beginning or at the end of a schedule, with the others occupying the middle
part. These observations carry over to the model in which no intermediate
storage is available, so that a job can only leave a machine when its next
machine is available. We refer to Foley & Suresh [1986] and Wie & Pinedo
[1986] for more recent work on the latter model, and to Boxma & Forst [1986]
for a result on a stochastic version of F| |EU.,.

Not surprisingly, job shops pose even greater challenges. The only successful
analysis has been carried out by Pinedo [1981] for an exponential variant of
J2|m;<2|C,,, (see Section 14.1).

The results in stochastic scheduling are scattered, and they have been
obtained through a considerable and sometimes disheartening effort. In the
words of Coffman, Hofri & Weiss [1989], ‘there is a great need for new
mathematical techniques useful for simplifying the derivation of results’.
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